TERM 2 2025 MARKING SCHEME **CHEMISTRY PAPER 3**

1. (a)

Time (min)	0	1/2	1	1 1/2	2	2 1/2	3	3 1/2	4
Temperature	19.0	19.0	19.0	19.0	X	16.0	15.0	15.0	15.0
(°C)									

Complete 1mk C.T = 1D.C = 1

8 readings – 1mk- penalize – ½ of space not filled

A.C = 1

½ for unrealistic values T 100 or 40

Tr = 1

4mks

 $\frac{1}{2}$ all constant t = 0 to t = 4

½ if T(T(2½)

<u>Decimal place</u> – 1mk

- Accept whole number or to 1d.p of 0.5 or 0.0

 $-1mk S.V \pm 2units$ Accuracy

Trend - 1mk

Award $\frac{1}{2}$ - where $t = 0 - t - \frac{1}{2} \min = \text{all constant}$

 $t = \frac{1}{2} - t \frac{1}{2} \min - \text{constant}$

Award $\frac{1}{2}$ - t - $2\frac{1}{2}$ to 4min - show a drop

Graph (b)

Ans $-\frac{1}{2}$ - both axis correctly labelled

Scale = $\frac{1}{2}$ - use more than $\frac{3}{4}$ big squares in both axis

Plotting -1

Labeling -1

3 mks

Penalize ½ inverted and scale to accommodate all plots

Plotting

- all 8 points award 1mk

- 6pts & 7 award

 $- \le 5$ award 0mk

Labelling

Award ½ for two straight lines.

- ½ for extrapolation

(b) (i) T =correct reading

(ii) Heat of solution = $MC\Delta T$

 $= 50g \times 4.2Jg-1K-1 \times 4.5K$

 $= -50 \times 4.2 \times 45J$

 $= -50 \times 4.2 \times 4.5 \text{ KJ}$

1000

 Δ Hsoln = ?

0.0238moles = -50 x 4.2 x4JKJ

1000

1mole=?

 $= -50 \times 4.2 \times 4.5 \text{ KJ/mol}^{-}$

1000 x 0.0238

= -Ans

Penalized if ΔH – sign is + and not – ve (total 3mks)

TABLE 2

Titre	I	II	III
-------	---	----	-----

Final burette reading	24.4	24.5	24.3
Initial burette reading	0.0	0.0	0.0
Volume of solution H used (cm ³)	24.4	24.5	24.3

Conditions:- A complete table ...

3 consistent titrations 1ms C.T = 1

2 titrations done and are consistent...1mk D.C = 1

3 inconsistent titrations done and averaged 0mk only 1 titration done.....0mk PA = 1 GFA= 1

5mks

Penalty:

- (i) Penalize ½mk for inverted table.
- (ii) Penalize ½mk to unrealistic titre values e.g. volume cm3 unless explained.
- (iii) Penalize ½mk for wrong arithmetic.

B- Use of decimals1mk

(Tied to 1st and 2nd rows)

Conditions

- (i) Accept 1 decimal place / point if used consistently.
- (ii) Accept 2 decimal points, however the 2nd decimal point must be either 0.0 or 0.5

Penalty

- (i) Penalize fully if decimals are not used consistently
- (C) Accuracy1mk
 - (i) Conditions (i) If any of the volume used is within ± 0.1 cm³ of the school value (S.V)...
 - (ii) If there is one value within ±0.2cm³ of the school value (S.V)... (½mk)

(D) Principles of averaging.....1mk

Conditions

- (i) If 3 titrations done are consistent and averaged....
- (ii) If 3 titrations done and 2 are consistent and averaged1mk
- (iii) If 2 titrations done and are consistent and averaged....1mk
- (iv) If titration done ...1mk
- (v) If 3 titrations done and are inconsistent and averaged0mk
- (vi) If 2 consistent titrations averaged...0mk
- (vii) If 3titrations are done and are consistent but are averaged0mk

(E) Final answer1mk

Conditions

- (i) If the answer of the titre value is within ± 0.1 cm³ of the school value (S.V) award....1mk
- (ii) If the answer of the titre value is within ± 0.2 cm³ of the school value $\frac{1}{2}$ mk
- (iii) If the answer is not within ± 0.2 cm³ of the school value (S.V) award....0mk

(e) Average volume of solution H used

$$\frac{24.5 + 24.4 + \cancel{2}4\cancel{\cancel{3}}}{3} = 24.4 \quad \checkmark \cancel{\cancel{1}}\cancel{\cancel{2}}$$

$$3 \quad \checkmark \cancel{\cancel{1}}\cancel{\cancel{2}}$$
II. $\frac{24.4 \times 0.04}{1000} = 0.000976 \quad \checkmark \cancel{\cancel{2}}$

III.
$$\frac{\sqrt{1}}{2}$$
 x 0.000976 = 0.00244 (penalize $\frac{1}{2}$ for wrong units)

IV.
$$\frac{3}{250} \times 0.00244 \checkmark \frac{1}{2}$$

 $= \frac{3}{0.0244} = 123 \text{ (no units) penalize for units)}$

(f)
$$123-90 = 33 \checkmark \frac{1}{2}$$
$$16 + (2x1) = 18x = 33$$
$$x = \frac{33}{18} = 1.833$$
$$x = 2 \checkmark \frac{1}{2}$$

2. (a) (i)

Observation	Inference
- Solid dissolves, yellowish solution.	- Soluble compound.
- Colourless fumes/vapour are	- Mix with water is exothermal heat is
produced.	produced. (1 mk)
- boiling tube becomes warm.(1 mk)	-

(ii)

Observation	Inference
- Blue litmus turns red.	- Presence of H ⁺ /H ₃ O in the solution.
- No effect on litmus paper. (1mk)	- Solution is acid (1 mk)

(iii)	Observation	Inference
(111)	- White ppt. soluble in excess.	- Pb^{2+} , Zn^{2+} , Pb^{3+} present. (1 mk)
	(1 mk)	

(iv)

Observation	Inference
- White ppt. persisted	- Al ³⁺ or Pb ²⁺ probably present
insoluble in excess	

(v)

Observation	Inference
- Mixture remains colourless/ No yellow	- Pb ²⁺ absent (1glim).
ppt. seen. (1 mk)	- Al ³⁺ present

(vi)

Observation		Inference
- White ppt. seen.	(1 mk)	- SO ₄ ²⁻ , CO ₃ ²⁻ , SO ₃ ²⁻ absent
		- Cl- is present (probably present)

3. a)

Observation	Inference] b) i
- Solid Cobbis footions a colourless and ignit	es -Interecompound organic compound/presence	
/burns withfervescence/ fizzling/bubbles of	Presence of – COOH/HothH3O+ions.	
Smokovlosorbetysfkanne. (1 mk)	Solution Card . (1 mk)	(ii)
- No effect on litmus paper.	/ _	(11)
Observation	Inferance of saturated organic	
- The solution remained orange.	- Alexance of de - QHmk) (1 mk)	lko/po

Download this and other FREE revision materials from https://teacher.co.ke/notes

