

- 1. a)( i) Concentrated sulphuric(VI)acid/  $H_2SO_{4(I)}$
- (ii)  $H_2SO_{4(I)} + NaCl_{(s)}K \rightarrow NaHSO_{4(s)} + HCl_{(g)}$
- (iii) Displacement
- (iv)  $Fe_{(s)} + HCl_{(g)} \rightarrow FeCl_{2(s)} + HCl_{(g)}$
- (v) Potassium hydroxide solution is a strong base with a pH of 13 (1mk) It is neutralized by excess HCl which is acidic and solution becomes acidic hence low pH (1mk)
- b) Potassium maganate(VII) // KMnO<sub>4</sub>

Calcium hypochlorite // CaOCl<sub>2</sub>

Lead(IV)oxide // PbO<sub>2</sub>

c) 
$$2Al_{(s)} + 3Cl_{2(g)} \rightarrow 2AlCl_{3(s)}$$
 (1mk)

Moles of 
$$Al = \frac{0.42}{27} (\frac{1}{2}mk) = 0.001481$$

Moles of 
$$Cl_2 = \frac{0.001481 \times 3}{2} \stackrel{(1/2)mk)}{=} 0.00222$$

Vol. Of 
$$Cl_2 = 0.0022 \times 24$$
 (½)

 $= 0.05333 dm^{2} (\frac{1}{2}mk)$ 

- d) Chlorine reacts with water to form chloric(I)acid (HOCl) (½mk). The dye in the litmus paper combines with oxygen from HOCl and becomes white (½mk)
- 2. (a) (i) An element is a pure substance which cannot be split into simpler substances (1mk). A molecule is the smallest part of an element that can exist in a free and separate state. (1mk)

  NB: Both must be mentioned to score. If both not mentioned award zero(0mk)
- b) (i) J (1mk)
- It has the highest number of delocalized electrons//It has 3 delocalized electrons(1mk)
- (ii)  $3E_s + G_2 \rightarrow E_3G_{2(s)} / / 3Mg_{(s)} + N_{2(g)} \rightarrow Mg_3N_{2(s)}$
- (iii) I Ionization energy of C is higher than D.(1mk) OR Ionization energy of D is lower than C(1mk)
- C has a smaller atomic radius hence the electrons are more attracted (1mk)/ OR D has a larger atomic radius and hence the electrons weakly attracted by nucleus (1mk)
- (iv) E forms a glant metallic structure (½mk) consisting of strong metallic bonds (½mk). K forms molecular structure(½mk) consisting of weak Vander Waals force(½mk) which are easy to break
- (v) Shown on the grid

|   |   |   |   |   | F |
|---|---|---|---|---|---|
| С |   |   | G | Н |   |
| D | E | J | L | K |   |
|   |   |   |   |   |   |



OR

(vi) 
$$2J_{(s)} + 3H_2SO_{4(aq)} \rightarrow J_2(SO_4)_{3(aq)} + 3H_{2(g)}$$
 =(1mk)

Moles of 
$$H_2 gas = \frac{0.4}{24} = 0.01666$$

Moles of 
$$J = \frac{0.01666 \times 2}{3} = 0.01110$$

Moles of 
$$J = 0.01110x27( \%mk)$$
  
=  $0.2997g( \%mk)$ 

**3.** (a) (i) Alkynes

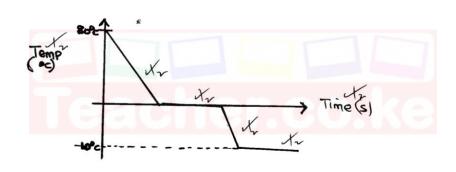
(ii) Esters
$$H \qquad H \qquad H$$
b) (i)  $C = C - C - H$ 

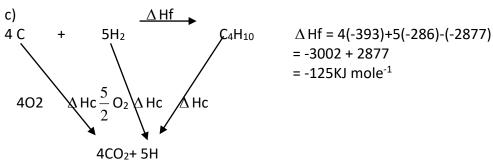
(ii) Add bromine water to  $C_3H_6$  and  $C_3H_8$  in separate test-tubes (1mk)

 $C_3H_6$  - decolourises bromine water (½mk) while  $C_3H_8$  does not (½mk)

- Add acidified  $KMnO_4$  solution to  $C_3H_6$  and  $C_3H_8$  separately(1mk)
- $C_3H_6$  decolourises  $KMnO_4$  (½mk) and  $C_3H_8$  does not (½mk) OR
- Burn the two gases separately(1mk)
- $C_3H_6$  burns with a sooty flame (½mk)
- $C_3H_8$  burns with a non-sooty flame( ½ mk) OR
- React both with bromines gas(1mk)
- $C_3H_6$  decolourises bromine gas( ½mk)
- $C_3H_8$  does not decolourise (½mk)

- d) (i) Propan-I-ol //  $CH_3CH_2CH_2OH$
- (ii) It is insoluble in water





$$CH_3$$
  $H$   $CH_3$   $H$   $CH_3$   $H$   $H$   $H$   $H$   $H$   $H$   $H$ 

- (ii) 2 Making ropes **Packaging** Plastic chairs Buckets
  - **4**. a)

$$\Delta H = +2671 - 2710$$
  
= -39KJ

b)





- $\Delta$  Hf = 4(-393) + 5 (-286) 2 (-28nn) ii) = -3002 + 28nn  $= -125 \text{ KJ mol}^{-1}$
- d)  $\Delta$  Hsoln =  $\Delta$  H half +  $\Delta$  H hydr 690 + (-322 2 364) 690 + - 686 = -4 KJmol<sup>-1</sup>
- **5**. a) (i) Anhydrous calcium chloride// anhydrous  $CaCl_2$



- (ii) Absorb carbon(IV)oxide gas
- (iii) The mass increases
- (iv) 1 The volume would decrease (1mk)
  - nitrogen will react with magnesium ( ½mk) and hence volume decreases
  - magnesium more reactive than copper (½mk)
- b) (i)  $S \rightarrow Air$  (½mk)
  - U = Nitrogen (½mk)

V = Ammonium sulphate (½mk)

- (ii) Electrolysis
- (iii) Catalyst Platinum rhodium (½mk)

Reagent 2 air/oxygen (½mk)

- Water (½mk)

(iv) 
$$3CuO_{(s)} + 2NH_{3(g)} \rightarrow 3Cu_{(s)} + 3H_2O_{(l)} + N_{2(g)}$$

- c) I brown fumes (½mk)
  - sulphur dissolves ( ½mk)
  - $=HNO_3$  acid reduces by sulphur to  $NO_2$  ( ½mk)
  - -sulphur oxidized to  $SO_2$  or  $H_2SO_4$  (½mk)
- **6**. (a) This is the maximum mass of a solute required to saturate 100g of the solvent at a particular temperature.
- (b) (i) in graph paper
  - ii) I 16g  $\sqrt{1}$  mk II 25g  $\sqrt{1}$  mk
- (iii) 25 16 = 9g/100g water
- (iv) Extraction of Na<sub>2</sub>CO<sub>3</sub> from Lake Magadi
  - Extraction of NaCl from sea water
- **7.** a) (i)  $Cl^{-}$
- (ii)  $MgCO_3$ 
  - $ZnCl_2$

b) 
$$Mg^{2+}_{(aq)} + CO_{3(aq)}^{2-} \to MgCO_{3(s)}$$

- c) Tetraamine Zinc(II) ions
- d) (i)  $\square$  Add 50cm<sup>3</sup> of 1M  $HNO_3$  to 50cm<sup>3</sup> 1M KOH and stir (1mk)
  - heat | evaporate to saturation (1mk)
  - Allow the solution to cool for crystals to form (1mk)

**NB:** If candidate does not mention  $1M \ KOH$  and  $50 \text{cm}^3 = 0 \text{mk}$ 

(ii) 
$$2KNO_{3(s)} \to 2KNO_2 + O_{2(g)}$$
 (1mk)

- (iii) 2 As a fertilizer
  - Gum powder

Accept any other correct use