Teacher.co.ke

TERM 2 2025

CHEMISTRY PAPER 1 MARKING SCHEME

1 a. a drug is any substance natural or manufactured which when used alters the way the body functions. (1mk)

- b. tobacco, alcohol, bhang, khat (miraa) (any two ½ each)
- 2. Any two correct laboratory rules.

3.

- 4.i. Fractional distillation
- ii) Since the two liquids are immiscible pour the mixture into the separating funnel and allow settling. $\sqrt{1}$ 1mk
- The denser liquid will settle down and the less dense one will form the second layer on top. $\sqrt{1}$ 1mk
- Open the tap and run out the liquid in the bottom layer leavingthe second layer in the funnel. √ 1mk
- 5. a) i. Zinc carbonate
- ii. Zinc chloride
- iii. carbon iv oxide
- b) $ZnCO_{3 (s)} + 2HCl_{(aq)}$ $ZnCl_{2 (aq)} + CO_{2 (g)} + H_2O_{(l)}$ (penalize ½mk for missing or wrong state symbol)
- 6. a) $3Mg_{(s)} + N_{2(g)}$ \longrightarrow $3Mg_3N_{2(s)}$
- b) Argon
- c. i) absorbs carbon (iv) oxide
- ii) remove oxygen
- 7. a) $\sqrt{1} \text{mk labeling the gas} \\ \sqrt{1} \text{mk method of gas collection}$

b) To drive out air out of the apparatus and to generate steam.

8. a)
$$\frac{20}{1000}$$
 x 0.25 $\sqrt{\frac{1}{2}}$ mk
= 0.005 $\sqrt{\frac{1}{2}}$ mk

b) $Na_2CO_{3(aq)} + 2HNO_{3(aq)} \longrightarrow 2NaNO_{3(aq)} + CO_{2(g)} + H_2O_{(l)} \sqrt{1mk}$ (penalize ½mk for missing or wrong state symbol)

moles of Na₂CO₃
$$\longrightarrow$$
 0.005×1 $\sqrt{\frac{1}{2}}$ mk = 0.0025 moles $\sqrt{\frac{1}{2}}$ mk

c)
$$\frac{250}{25}$$
 x 0.0025 $\sqrt{\frac{1}{2}}$ mk = 0.025moles $\sqrt{\frac{1}{2}}$ mk

- 9. a) i) 11 protons
- ii) 16 protons
- b) Formula of compound = T_2Z $\sqrt{1mk}$ Mass number of T = 11 + 12 = 23 $\sqrt{\frac{1}{2}mk}$ for both values Mass number of Z = 16 + 16 = 32 Formula Mass of $T_2Z = (23x^2) + 32 = 78$ $\sqrt{\frac{1}{2}mk}$
- c) When molten $\sqrt{\frac{1}{2}mk}$
 - When in aqueous solution $\sqrt{\frac{1}{2}mk}$
- 10. Ethanol contains molecules $\sqrt{\frac{1}{2}}$ which are not $\sqrt{\frac{1}{2}}$ responsible for electrical conductivity. (words to that effect.)
- 11. R has the smallest atomic $\sqrt{\frac{1}{2}}$ size hence its outermost electrons are more strongly held to the nucleus resulting in high $\sqrt{\frac{1}{2}}$ value of ionization energy
- 12. Add to lead (II) carbonate dilute nitric acid until in excess $\sqrt{\frac{1}{2}mk}$
 - filter to obtain lead (II) nitrate solution as filtrate. $\sqrt{\frac{1}{2}mk}$
 - React the filtrate with sodium sulphate solution $\sqrt{\frac{1}{2}}$ mk to form insoluble $\sqrt{\frac{1}{2}}$ mk lead (II) sulphate
 - Filter to obtain lead (II) sulphate as residue. $\sqrt{\frac{1}{2}mk}$
- Wash the salt of lead (II) sulphate with distilled and dry in between the filter papers $\sqrt{\frac{1}{2}}mk$ 13.a) A covalent bond is formed by equal contribution of the shared electrons by the atom $\sqrt{1}$ while Co-ordinate bond is where the shared electrons are contributed by one of the atoms. $\sqrt{1}$

- 14. Silicon (IV) oxide forms giant atomic structure $\sqrt{1}$ 1mk of strong covalent bonds $\sqrt{1}$ 2mk having high melting point. Carbon (IV) oxide has a simple molecular structure $\sqrt{1}$ 1mk with weak Van der Waals forces $\sqrt{1}$ 2mk between hence the low melting point.
- 15. i) hygroscopy ii) deliquescence iii) efflorescence $\sqrt{1}$ mk each
- 16. a) An electrolyte is a substance which when melted or dissolved in water conducts an electric current and gets decomposed by the current.
- b) Process of decomposing an electrolyte by passing an electric current through it.
- c) i) delocalized electrons ii) mobile ions
- 17. a) black mixture turns into a brown powder.
- b) $2CuO_{(s)} + C_{(s)} \longrightarrow 2Cu_{(s)} + CO_{2(g)}$
- c) solid carbon (IV) oxide is used as a refrigerating agent for perishable goods.
 - -to extinguish fires
- -manufacture of sodium carbonate in solvay process
- -add taste in aerated drinks
- manufacture baking powder

18. X:
$$t_1 = 28.3 \text{sec}$$

$$RMM = ?$$

$$Q_2$$
: t_2 = 20.0sec

√1mk

$$\frac{T_1}{T_2} = \sqrt{\frac{X}{32}}$$

$$\left(\frac{28.3}{2}\right)^2 = \frac{X}{2}$$

$$\sqrt{\frac{1}{2}mk}$$

$$X = 800.89 \times 32^{-\sqrt{1/2}} mk$$

$$400$$

$$X = 64 \quad \sqrt{1}mk$$

19. RFM of
$$NaHCO_3 = 23+1+12+16x3$$

$$= 84 \sqrt{\frac{1}{2}mk}$$

Moles of NaHCO₃ =
$$\frac{2100 \times 1000}{84} \sqrt{1 \text{mk}}$$

= 25000 molesMole ratio of NaHCO₃:CO₂ = 2:1

∴ Moles of
$$CO_2(g)$$
 \longrightarrow 25000 ÷2 = 12500 moles $\sqrt{\frac{1}{2}mk}$
Volume of $CO_{2(g)}$ = 22.4 x 12500 $\sqrt{\frac{1}{2}mk}$
= 280,000 dm³ $\sqrt{\frac{1}{2}mk}$
20. Fe S O H₂O
No. of moles $\frac{20.2}{56}$ $\frac{11.5}{32}$ $\frac{23.0}{16}$ $\frac{45.3}{18}$ $\sqrt{\frac{1}{2}mk}$
= 0.36 = 0.36 = 1.44 = 2.52
Mole ratio $\frac{0.36}{0.36}$ $\frac{0.36}{0.36}$ $\frac{1.44}{0.36}$ $\frac{2.52}{0.36}$ $\sqrt{\frac{1}{2}mk}$

Empirical formula: FeSO₄.7H₂O

√ 1mk

- 21. i) $C_nH_{2n} \sqrt{1}mk$
- ii) C_sH_{10} $\sqrt{1mk}$
- iii) 70 √ 1mk , **OPEN STRUCTURAL FORMULA TO BE DRAWN** √ 1mk (PENALIZE FOR CONDENSED FORMULA)
- 22. a) calcium hydroxide, sodium hydroxide or potassium hydroxide (any one $\sqrt{1}$ mk)

b)
$$Ca(OH)_{2(s)} + 2NH_4Cl_{(s)}$$
 $CaCl_{2(s)} + 2H_2O_{(s)} + 2NH_{3(g)}$

$$NaOH_{(s)} + NH_4Cl_{(s)}$$
 \longrightarrow $NaCl_{(s)} + H_2O_{(s)} + NH_{3(g)}$

$$KOH_{(s)} \ + NH_4Cl_{(s)} \qquad \qquad \blacktriangleright \quad KCl_{(s)} \ + \ NH_2O_{(s)} \ + \ NH_3(g)$$

(Penalize ½ for missing or wrong state symbols)

- 23. a) vanadium (V) oxide
- b) $2SO_{2(g)} + O_{2(g)}$ \longrightarrow $2SO_{3(g)}$ (penalize ½ for missing or wrong state symbols)
- 24. i) chlorine gas ii) Sodium chlorite (I)
- 25. (a) Temporary water hardness . $\sqrt{1}$ mk This is because hardness is removed by boiling $\sqrt{\frac{1}{2}}$ mk
 - (b) Provide Calcium needed in formation of strong teeth and bones

- Hard water forms a layer of carbonate of lead which prevent water coming in contact with lead which cause poisoning
 - It is used in beer brewing (award 1mk for any one)
- 26. a) I- Cu (OH)₂ or copper (II)hydroxide $\sqrt{1}$ mk

$$b) \boxed{Cu(NH_3)_4}^{2+} \qquad \sqrt{1}mk$$

- c) Hydrogen sulphide or $H_2Sg \sqrt{1}mk$
- 27. $\triangle H = 120 \times 4.2 \times 4.5$ (½mk) 1000 = +2.268KJ $(\frac{1}{2}mk)$
 - RFM of $KNO_3 = 39 + 14 + 48 = 101$ (b)

101g
$$\longrightarrow 101 \times 2.268$$
 (½mk)
 $= +38.178 \text{KJ mol}^{-1}$ (½mk

28. a) Breaking of 'C = C' = +610 KJ

Formation of 2C - Br = -560

Breaking of 'Br – Br' =
$$\pm 193$$
 Formation of C-C = ± 346

$$+803 \sqrt{1/2}$$
mk

-906 √½mk

$$Sum +803 + -906 = -103KJ\sqrt{1mk}$$

b) Addition reaction/ halogenation √ 1mk