
MURANGA EAST JOINT MOCK EXAMINATION.

MATHEMATICS FORM FOUR

121/2																
NAME SIGNA						(6	Ĩ				K NO		5H1	En	NE	
INSTR	UCT:	[0]	N TC	CA	NDIN	NDA	TES									
a. Wri	te you	ır 1	name	e and	d inde	x nu	umber	in the	spaces	prov	rided.		9			
b. This	s pape	er o	consi	st of	two	secti	ons, se	ection 1	ands	sectio	n 2.					
C. Ans	wer a	11 6	Ques	tions	s in se	ectio	n 1, ar	nd any	Five q	uesti	ons in	Sect	ion 2.			
d. Sho	w all	st	eps i	n yo	ur cal	lcula	ations									
e. Mar	ks m	ay	be gi	iven	for co	rrec	et work	ing eve	en if tl	ne an	swer i	s wro	ng.			
f. Elec				ators	s may	be	used a	nd KNI	EC ma	athem	natica	l table	es e	xcept	wher	e
FOR E	XAM	IN	ER'S	US	E ON	LY										
SECTI	ON 1							16								
1 2	3		4	5	6	7	8	9	10	11	. 12	13	14	15	16	TOTAL
with																
SECTION	N 2															
17	18	1	.9	20	21	22	23	24	TC	TAL						
										13						
	A															

1. Given that $\sin^2 x = \frac{3}{4}$, Find $\sin x$ and $\tan x$ in surd form. 3mks

2. The velocity of a particle after t seconds is given by $V = 4t^2 - 2t + 3$ m/s. Calculate the acceleration of the particle when t = 3 seconds 3mks.

mks.

$$a = 8t - 2$$
 | MI
 $a = 8(3) - 2$ | MI
 $= 22M|_{52}$

3. Write down the inverse of $\begin{bmatrix} 2 & -3 \\ 4 & 3 \end{bmatrix}$ hence solve the simultaneous equation : 2x - 3y = 7 4mks

$$4x + 3y = 5$$

$$DET = 6 - (-12) = 18'$$

$$\frac{1}{18} \begin{bmatrix} 3 & 3 \\ -4 & 2 \end{bmatrix}$$

$$\frac{3}{18} \begin{bmatrix} 3 \\ 18 \end{bmatrix} \begin{bmatrix} 3 \\ 18$$

4. Simplify the expression:

4. Simplify the expression:
$$\frac{x^{2+3x+2}}{x^{2-1}}$$

$$(x+2)(x+1)$$

$$(x-1)(x+1)$$

$$= \frac{x^{2}+3x+2}{x^{2}-1}$$

$$= \frac{x^{2}+3x+2}{x^{2}-1}$$

3mks

5. The average of first and third term of a G.P is 120. Given that the first of the G.P is 24, Find the common ratio.

$$\frac{a+ar^{2}}{2} = 720 \text{M} \quad V^{2} = 9$$

$$2 + ar^{2} = 240$$

$$2 + 24 + 24 + 2 = 240$$

$$2 + 24 + 24 = 216 \text{M}$$

6. The position vectors of points A and B are given as a = 3i - 3j and

b = 5i - j + 2k, respectively. Find the magnitude of A + B.

$$\begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} + \begin{bmatrix} 5 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ -4 \\ 2 \end{bmatrix} M_{1}$$

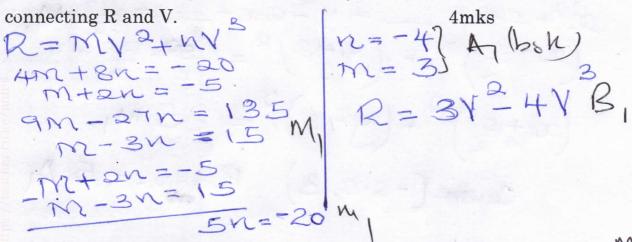
$$[A+B] = \begin{bmatrix} 8^{2} + (-4)^{2} + 2^{2} \\ 8^{4} + (-4)^{2} + 2^{2} \\ 8^{4} + (-4)^{2} + 2^{2} \end{bmatrix} M_{1}$$

$$= \begin{bmatrix} 8 + (-4)^{2} + 2^{2} \\ 8 + (-4)^{2} + 2^{2} \end{bmatrix} M_{1}$$

- 7. a) Write the simplified expansion of $(1-2x)^4$. 1mk $1 + 4 \cdot (\frac{3}{2}(-2x) + 6 \cdot (\frac{2}{2}(-2x))^2 + 4 \cdot (\frac{2}{2}(-2x))^2 + \frac{4}{2}(-2x)^2 + \frac$
 - b) Use the expansion to find the value of $(0.98)^4$, to 4 S.F 3mks = 2.2 = 0.02 = 0.01 $= 8(0.01) + 24(0.01)^2 32(0.01)^3 + 16(0.01)^4$ = 0.92236816 A = 0.92248
- 8. If x = 44.6 and y = 24.2 both being to one D.P, Calculate the

percentage error in x-y.

3mks


Nox: 44.65 - 24.15 = 20.5Min: 44.65 - 24.25 = 20.3Moving that error 0.2 = 0.1Ovigonal: 44.6 - 24.2 = 20.4Ovigonal: 44.6 - 24.2 = 20.4 0.1×10.4 0.1×10.4 0.1×10.4

9. Evaluate $\int_0^2 y dx$ given that $y = \underline{x^2 + (x + 4)}$ 4mks

 $\frac{(x+1)(x+4)}{(x+4)B} = \frac{x+4}{2} = \frac{2}{1}$ $\frac{(x+4)B}{2} = \frac{2}{1}$

10.R varies partly as square of V and partly as the cube of V.

When V = 2, R = -20, and when V = -3, R = 135. Find the Law

11. Make x the subject of the formula

11. Make x the subject of the formula

$$T = \frac{a}{3m} \sqrt{\frac{r}{k-x}} \implies 7^2 = \frac{a^2}{9m^2} \sqrt{\frac{v}{x-x}}$$

$$T = \frac{a}{3m} \sqrt{\frac{r}{k-x}} \implies 7^2 = \frac{a^2}{9m^2} \sqrt{\frac{v}{x-x}}$$

$$T = \frac{a}{3m} \sqrt{\frac{r}{k-x}} \implies 7^2 = \frac{a^2}{9m^2} \sqrt{\frac{v}{x-x}}$$

$$T = \frac{a}{3m} \sqrt{\frac{r}{k-x}} \implies 7^2 = \frac{a^2}{9m^2} \sqrt{\frac{v}{x-x}}$$

$$T = \frac{a}{3m} \sqrt{\frac{r}{k-x}} \implies 7^2 = \frac{a^2}{9m^2} \sqrt{\frac{v}{x-x}}$$

$$T = \frac{a}{3m} \sqrt{\frac{r}{k-x}} \implies 7^2 = \frac{a^2}{9m^2} \sqrt{\frac{v}{x-x}}$$

$$T = \frac{a}{3m} \sqrt{\frac{r}{k-x}} \implies 7^2 = \frac{a^2}{9m^2} \sqrt{\frac{v}{x-x}}$$

$$T = \frac{a}{3m} \sqrt{\frac{r}{k-x}} \implies 7^2 = \frac{a^2}{9m^2} \sqrt{\frac{v}{x-x}}$$

$$T = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}} \implies 7^2 = \frac{a^2}{9m^2} \sqrt{\frac{v}{x-x}}$$

$$T = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}} \implies 7^2 = \frac{a^2}{9m^2} \sqrt{\frac{v}{x-x}}$$

$$T = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}} \implies 7^2 = \frac{a^2}{9m^2} \sqrt{\frac{v}{x-x}}$$

$$T = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}} \implies 7^2 = \frac{a^2}{9m^2} \sqrt{\frac{v}{x-x}}$$

$$T = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}} \implies 7^2 = \frac{a^2}{9m^2} \sqrt{\frac{v}{x-x}}$$

$$T = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}} \implies 7^2 = \frac{a^2}{9m^2} \sqrt{\frac{v}{x-x}}$$

$$T = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}} \implies 7^2 = \frac{a}{9m^2} \sqrt{\frac{v}{x-x}}$$

$$T = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}} \implies 7^2 = \frac{a}{9m^2} \sqrt{\frac{v}{x-x}}$$

$$T = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}} \implies 7^2 = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}}$$

$$T = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}} \implies 7^2 = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}}$$

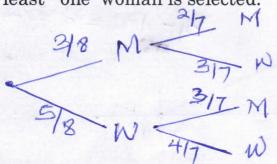
$$T = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}} \implies 7^2 = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}}$$

$$T = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}} \implies 7^2 = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}}$$

$$T = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}} \implies 7^2 = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}}$$

$$T = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}} \implies 7^2 = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}}$$

$$T = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}} \implies 7^2 = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}}$$


$$T = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}} \implies 7^2 = \frac{a}{9m^2} \sqrt{\frac{v}{k-x}}$$

$$T = \frac{a}{$$

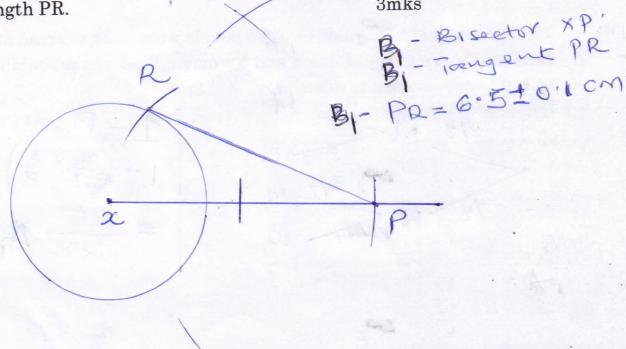
$$x = \frac{9m^2KT^2a^2}{9m^2T^2}$$

$$x = \frac{a^2V}{9m^2T^2}$$

12. In a nomination committee, two people were to be selected at random, from a group of 3men and 5 women. Find the probability that at least one woman is selected. 2mks

1- (2×3/8) M = 25 28 A

13. Find the radius and the centre of the circle whose equation is


$$4x^{2} + 4y^{2} + 20x - 24y = 39$$

$$x^{2} + 5x + 20x - 24y = 39$$

$$(x^{2} + 5x + 20x + 24y = 39 + 4y^{2} - 6x + 24y = 39 + 4y^{2} + 4y^{2} - 6x + 2y^{2} + 4y^{2} + 4$$

14. Determine the amplitude and period of the function,

15. Construct a circle, centre x, and radius 2.5 cm. Construct a tangent from a point P, 7cm from x, to touch the circle at R. Measure the length PR.

16. A rice blender mixes two types of rice, Type A which cost ksh 160 and Type B which cost ksh180. She sells the mixture at ksh 187.60 there by making a profit of 12%. Find the ratio at which she mixed the two types of rice.

3mks

$$\frac{100}{112} \times 187.60 = 167.5 \times 124.7 M$$

$$\frac{160 \times 187.60}{A+B} = \frac{167.5}{1} \times \frac{3}{1} \times \frac{3}{1}$$

$$\frac{160 \times 1808}{A+B} = \frac{167.5 \times 1167.5}{1}$$

$$\frac{160 \times 1808}{A+B} = \frac{167.5 \times 1167.5}{1}$$

$$\frac{A}{160} = \frac{5}{3}$$

$$\frac{B}{160} = \frac{5}{3}$$

$$\frac{B}{160}$$

Monthly taxable income	Tax rates
0 - 14200	10%
14201 - 26700	15%
26791 - 39200	20%
39201 - 51700	25%
51701 and above	30%

Wanjiku is a civil servant and earns a basic salary of ksh 34,800, Medical allowance of ksh 2,400, House allowance of ksh 10,000, commuter allowance of ksh 7,200 and non-taxable allowance of ksh12,000. She has a personal relief of ksh 1,020 and also get relief equivalent to 10% of the premium paid. If she pays monthly insurance premiums of ksh 2,700, calculate

a) Wanjiku's monthly taxable income. 2mks
$$34,800+2,400+10,000+7,200$$
 1 = $54,400$ 1 1

b) Find the net tax paid by Wanjiku per month. 5mks
$$|4200 \times 10| = |420| \text{ My Total} - 9730 \text{ Msh}.$$

$$|2700 \times 17| = |7875| \text{ My}.$$

$$|2700 \times 20| = |2,500| \text{ My}.$$

$$|2700 \times 20| = |3125| \text{ My}.$$

$$|2700 \times 20| = |3125| \text{ My}.$$

$$|2700 \times 0.8| = |810| \text{ My}.$$

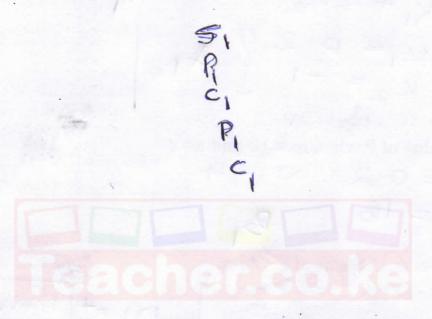
c)If Wanjiku pays a loan of ksh 8,000 every month, affordable house levy of 1.5% of taxable income and social health authority fee of ksh

levy of 1.5% of taxable income and social health authority fee of ksh 1,805. Find her net monthly pay.

Smks

$$= 21761$$
 $= 21761$
 $= 21761$
 $= 444,639$
 $= 444,639$

18. a) Complete the table below giving your values correct to 2 decimal places.


2mks

	0	15	30	45	60	75	90	105	120
y =3cosx	3.00	2-90	2.60	2-12	1.50	0.78	0.00	-0.78	-1-50
$Y=4\sin(2x-10)^0$	-0.69	1.37	3.06	3.94	3.76	2.57	0.69	-1-37	-3.06

b) Taking 1 cm to represent 15° on the x – axis and 2cm to represent 1 unit on the y-axis, draw the graph of y= $4\sin(2x-10)^{\circ}$ and y= $3\cos x^{\circ}$ on the same set of axes on the grid provided.

5mks.

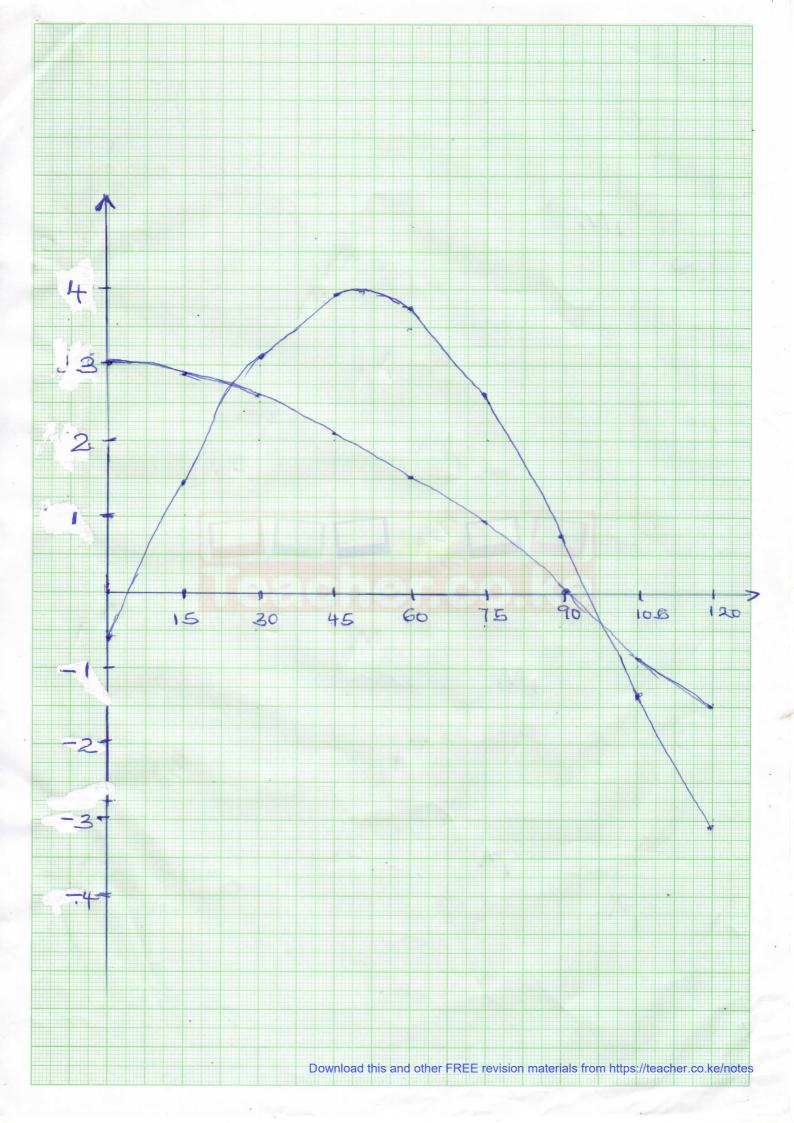
c) Use your graph to find the values of x for which $3\cos x - 4\sin(2x-10) = 0$ 1mk

Foints of Intersection

x= 25.5°, 97.5° ± 1.5° B1

- d) State
- i) The amplitude of graph y=3cosx

1mk


3

BI

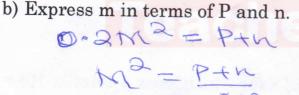
ii) The Period of the graph y=4sin(2x-10)

1801

131

19.A Quantity P varies as the square of m, and partly as n.

When P = 3.8, m = 2, and n = -3. When P = -0.2, m = 3, and n = 2.


- a). Find:
- i) The equation that connect P, m and n.

P= K, M2 + K2 M; HK, - 3 L2 = 3.8 M; 9 K; + 2 L2 = -0.2 M; K2= -1 } A

ii) The value of P when m = 10 and n = 4

1mk

2mks


M2 = P+n M M = + P+n

c.) If P and n are each increased by 10%, Find the percentage increase in m correct to 2 decimal places.

1.1 (P+n) 0.2 P+n M, = 1.04881 P+n M, 0.2 P+

20. Onyango, Chege and Mutiso are playing a game of darts. The probability of Onyango, Chege and mutiso hitting the bull's eye is $\frac{3}{5}$, $\frac{1}{4}$ and $\frac{4}{7}$ respectively.

a) Draw a tree diagram showing a list of all possible outcomes.

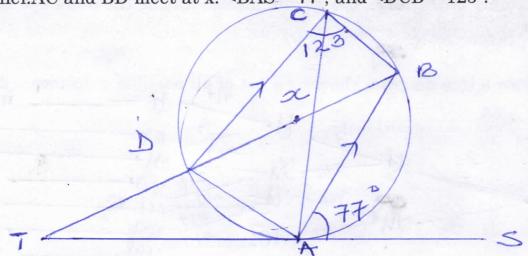
- b) Find the probability that, in one attempt
- i) Only one will hit the bull's eye.

Only one will hit the bull's eye.

$$P(Hmm) + P(mHm) + P(mmH)$$

$$(\stackrel{?}{=} \times \stackrel{?}{=} \times \stackrel{?}{=}) + (\stackrel{?}{=} \times \stackrel{?}{=} \times \stackrel{?}{=} \times \stackrel{?}{=}) + (\stackrel{?}{=} \times \stackrel{?}{=} \times \stackrel{?}{=}$$

ii)Two hit the bull's eye.


Two hit the bull's eye.

$$P(H+M) + P(M+H) + P(M+H)$$
 $P(H+M) + P(H+M) + P(M+H)$
 $P(H+M) + P(H+M) + P(H+M)$
 $P(H+M) + P(H+M)$
 $P(H+M)$

iii) At least one hit the bulls eye.

2mks

21. In the diagram below TA is Tangent to the circle. AB and CD are parallel.AC and BD meet at x. <BAS = 77°, and <DCB = 123°.

a) Given that TB = 24cm and TD = 6cm Find TA.

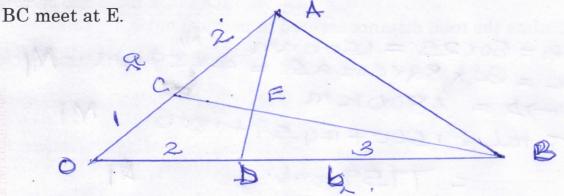
b)Giving Reasons find the values of the following angles

DAB
180-123 = 57° cyclic quandritateral

CDAT
186-(77+57) = 46° straight in a
81° i) < DAB

ii) <DAT

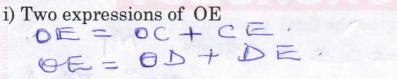
DCA


Hogh in alternate segment

CDTA

(180-(163+46) = 310-Angles in a

By Triangle. iv) < DTA


22. The diagram below shows triangle OAB . OA = a and OB = b. C divides OA in the ratio 1:2 and D divides OB in the ratio2:3. AD and

a) Find the following vectors in terms of, a and b.

- = a+b B, i) AB 1mk
- -1:a+bB 1mk ii) CB
- iii)OC 1mk
- 1mk iv) AD

b) Given that CE = mCB and DE = nDA where m and n are scalars. Find:

2mks

ii) Find the values of m and n. Find the values of in and in. $0E = (\frac{1}{3} - \frac{1}{3}m)a + mb = na + (\frac{2}{3} - \frac{2}{3}m)a + \frac{2}{3}m = \frac{2}{3} - \frac{2}{3}m$ n= 3 and M= 4

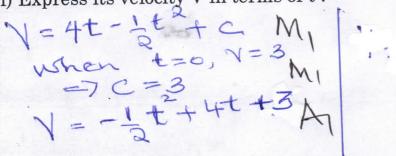
iii) Find OE. DE=30+4b

23.A ship sails from $A(0^{\circ}, 70^{\circ}W)$ Due North to $B(25^{\circ}N, 70^{\circ}W)$ then due east to C(25°N,12°E) and finally a further 1800nm due east to D.

a) Calculate the total distance covered in nautical miles.

AB = 60x25 = 1500 mm M) BC = 60 x 82x cos 25 = 4459 mm C-70 = 1800 nm Total = 1500 + 4459+1800 = 7759 nm.

b) If the whole journey took a total time of 300 hours, Find its average 2mks velocity in knots correct to one decimal place.


7= 7759 = 25.9 Knots.

c.) Find to the nearest degree the final position of the ship.

 $0 \times 1800 \times 0 = 1800 \text{ M}$ $0 \times = 1800 = 33.10^{\circ} \text{ M}$ $0 \times 0 \times 0 \times 25 = 1800 \text{ M}$ longitude of D = 33.10+12 = 45.10°E.
Position of D (25°N, 45°E)

- 24. The acceleration of a body moving in a straight line (4 t)m/s²and its velocity is vm/s after t seconds.
- a) If the initial velocity of the body is 3m/s,
- i) Express its velocity V in terms of t.

3mks

ii) Find the velocity of the body after 2 seconds.

2mks

$$V = -\frac{1}{2}(2x^2) + 4(2) + 3M$$

= $9M(SA)$

- b) Calculate:
- i) The taken to attain maximum velocity.

$$V = -t^{2} + 8t + 6 = 0$$

$$t = -8 \pm 64 - (4x - 1x24)$$

$$t = 8 - 691$$

$$t = 8 - 691$$

ii) The distance covered by the body to attain the maximum velocity.