

CHEM PAPER 3 MARKING SCHEME

Question 1

Table 1

	1	2	3
Final burette reading(cm³)	24.5	24.5	24.5
Initial burette reading (cm³)	0.0	0.0	0.0
Volume of acid used (cm ³)	24.5	24.5	24.5

Marking

- Complete table award; ✓
- Decimal consistency; ✓
- Accuracy ± 0.1; ✓
- School value; ✓

Principles of averaging:

Average volume = 24.5 + 24.5 + 24.5 = 24.5; \checkmark (½ mark)

3

= 24.5 cm³; √(½ mark)

(a) Moles of sodium hydroxide used

Molarity of solution:

Moles = Mass /litre

RMM

= 4 = 0.1 molar

40

If 1000 cm³ \rightarrow 0.1mole

Then 25 cm³ \Rightarrow 25 x 0.1 = 0.0025 moles;

1000

(ii) Moles of hydrochloric acid

 $NaOH_{(aq)} + HCI_{(aq)} \rightarrow NaCI_{(aq)} + H_2O_{(I)}$

Mole ratio = 1:1;

Thus moles of acid = 0.0025 moles;

(iii) Molarity of acid.

Volume of acid reacting = average titre in (a) e.g. 24.5 cm³

If 24.5 cm³ \rightarrow 0.0025 moles

Then $1000 \text{ cm}^3 \rightarrow \underline{1000 \times 0.0025} = 0.1020 \text{ molar};$

24.5

i)

Volume of dis <mark>til</mark> le <mark>d</mark> water in	Temperature in °C at which	Solution of solid C in
the boiling tube cm ³ .	crystals first appear.	g/100g of water.
4	68.0	112.50
6	58.0	75.00
8	53.0	56.25
10	47.0	45.0
12	43.0	37.50

a) Complete the table by calculating the solubility of solid C in g/100g of water. (5mk)

Complete table - 1mk

Trend - 1mk

Accuracy - 1mk

Calculation of solubilities – 2mk

b) i) On the grid provided, plot a graph of solubility of solid C against temperature. (3mks)

s = scale

$$S = \frac{1}{2}$$

l = labeling

$$L = \frac{1}{2}$$

p = plotting

$$p = 1$$

l = line/curve

ii) Using your graph determine the temperature at which 100g of solid C would dissolve in $100 cm^3$ of water. (1mk)

66.5°C

Ouestion 2

You are provided with solid X which is a mixture of two compounds, carry out the tests below, record your observations and inferences in the table shown.

i) Place a spatulaful of solid X in a boiling tube. Add about 10cm3 of distilled water, shake the mixture well and then filter. Wash the residue by adding distilled water. Preserve both the filtrate and the residue.

erial	Observation	Inferences
Blue soluti	on formed. White insoluble solid settler at the bottom	Cu ²⁺ present.

1mk 1mk

ii) To about 2 cm³ of the filtrate add 3 – 4 drops of Barium nitrate followed by a few drops of dilute nitric (V) acid solution.

Observation	Inferences
White ppt formed which remains on addition of HNO ₃	SO ₄ ² · present
Or insoluble in HNO ₃	
((1mk)	(1mk)

iii) To about 2 cm³ of the filtrate add sodium hydroxide dropwise until in excess.

	Observation		Inferences	
Blue ppt f	ormed insoluble in excess		Cu ²⁺ present	
		(1mk)		(1mk)

b. i) Remove the residue from the filter paper and put it in the boiling tube. Add about 6 cm³ of dilute nitric (V) acid until all the solid dissolves

	Observation	Inferences
Effervesce	ence/ bubbling occurs with evolution of	CO ₃ ²⁻ present.
A colourless gas. A colourless solution is formed.		Cu ^{2+,} Fe ²⁺ or Fe ³⁺ ions absent.

(1mk) (1mk)

ii) To about 2 cm³ of the solution formed in (i) above add sodium hydroxide drop wise until in excess.

Observation		Inferences
White ppt forms insoluble in excess.		Zn ^{2+,} Pb ²⁺ or Al ³⁺ present.
	(1mk)	(1 mk)

iii) To another 2 cm³ portion of the solution formed in (i) above add 4 -5 drops of dilute hydrochloric acid and warm the mixture.

	Observation	Inferences	
White ppt	formed which dissolves on warming	Pb ²⁺ present	
	(1mk)		1 mk)

Question 3.

i)

TEST I	EXPECTED OBSERVATION
Place an endful spatula of solid M on a clean dry	Burns in a yellow sooty/smoky flame.
metallic spatula. Burn in a non-luminous part of	
Bunsen burner flame.	
(¹/2 mk)	(1/2 mk)

Place the remaining solid M in a boiling tube. Add about 10.0cm3 of distilled water and shake well. Divide the mixture into two portions for test II and II below.

TEST II	EXPECTED OBSERVATION
To the first portion add 1 cm ³ of universal	Solution has a pH of 5
indicator to test the pH of the solution.	
(1mk)	(1/2 mk)

TEST III	EXPECTED OBSERVATION
To the secondportion, add an endful spatula of	An effervescence is produced of a colourless gas.
solid sodium carbonate.	(¹/₂ mk)

(1mk)	

Carry out the tests described in (a) using solid M and record the observations and inferences in the spaces provided.

Test 1

	Observations		Inferences	
A yellow sooty/smoky flame is produced. The metallic spatula turns to black.			Presence of	
Гest II		(1mk)	A long unsatura	ated hydrocarbon is prese (1 mk)
l est II	Observations		Inferences	
	pH = 1		Strongly acidic	
		1mk)		1mk)
Test III				
	Observations		Inferences	

An effervescence of a colourless gas produced

the substance contains H+ or -COOH

or

or
An organic acid

Bubbles of a colourless gas.

(1 mk) (1 mk)