

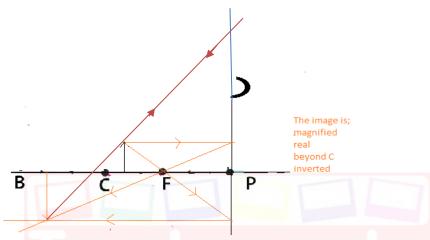
MARANDA HIGH SCHOOL Kenya Certificate of Secondary Education MOCK EXAMINATIONS 2025

232/2	PHYSICS PAPER 2	Paper 2
Name:		Adm No:
Class:	Candidate's Signature:	Date: 1/8/2023.
Instructions to can	didates	
 This paper consists of 	of TWO sections; A and B. Answer ALL the ques	tions in section A and B in the
spaces provided.		
 ALL working N rules may be u 	MUST be clearly shown. Mathematical tables, e used.	electronic calculators and slide
 Candidates s 	should check the question paper to ensure that	t all the 16 pages are printed as

Take $c=3.0x10^8 m/s$

indicated and that no questions are missing.

	score	
1 - 13	25	
14	13	. Ke
15	14	
16	15	
17	7	
18	6	
	14 15 16 17	14 13 15 14 16 15 17 7

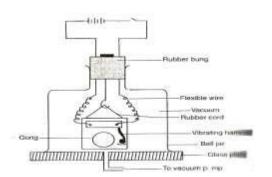


Marking scheme

- The speed of the electrons produced increases ✓ hence the strength of x-rays is increased.
- 2. Attraction can occur between magnets and between a magnet and a magnetic material.

 ✓
- 3. National grid system ensures that there is power to consumers even when one of the power stations fails. ✓

4.


5. Connection of resistors in parallel gives a <u>cumulative lower resistance</u> ✓ than when in series hence minimizes chances of overheating.

6.

- 7. To absorb any incident light ray that falls on the walls of the pinhole camera \checkmark
- 8. It is coiled to <u>increase the length thereby increasing the resistance</u> ✓ thus high amount of electrical energy is converted into heat energy per unit time when the switch is closed.
 - 9. i.Set up the apparatus as shown below

ii-switch<u>on the circuit</u> to make the bell ring continually as <u>air is pumped out</u> slowly using vacuum pump ✓

Observation and conclusion

- -the intensity of the sound <u>diminishes/fades continually</u> \checkmark as the air is pumped out this explains that <u>sound does not travel in vacuum</u> \checkmark
- 10. E.m.f of the cell drops below 1.8V ✓
 Relative density of the acid falls below 1.12 ✓ (using a hydrometer)
- 11. Radio waves are <u>easily diffracted</u> □ around hills than T.V waves since radiowaves have <u>longer</u> wavelengths.
- 12. (i) Diagram
 - (ii)The repelled <u>negative charge flow to the ground</u>, ✓ leaving the conductor positively charged.
 - (ii)Due to repulsion, the <u>positive charges spread on the conductor</u> but the density is <u>relatively high on sharp end</u>. ✓
- 13. Winding the coil on a soft iron core. ✓Increasing the number of turns of the rotating coil. ✓Using a stronger magnetMultiplying the number of coils and commuter segments
- 14.(a) (i) Emision of electrons from surface of metal by shining light/radiation of sufficient frequency/energy on them.
- (ii) Maximum wavelength of the radiation beyond which no photoelectricity occurs /no electron is emited
 - (a) (i) $f = 6.4 \times 10^{14} \text{ Hz}$ (shown from the graph/stated)

$$\lambda = \frac{c}{f}$$

$$\lambda = \frac{3.8 \times 10^{\circ}}{6.4 \times 10^{14}}$$

$$= 0.46875 \times 10^{-6} \,\mathrm{m}$$

(ii) From the vertical intercept $^{\rm w}_{\rm 0/e} = 3.0 {\rm eV}$

$$W_o = hf_o$$

 $h = 3 \times 1.6 \times 10^{-19}$
 6.4×10^{14}

$$= 7.5 \times 10^{-34} Js$$

(iii) Wo =
$$7.5 \times 10^{-34} \times 6.4 \times 10^{14}$$
 or $w_0/_e = 3.0 \text{ eV}$
= 4.8×10^{-19} $w_0 = 3.0 \times 1.6 \times 10^{-19}$
= $4.8 \times 10^{-19}I$

- (b) X-Live
 - Y Neutral wire
 - Z Earth wire
 - 15.(a) A Cathode **√**
 - B Anode V

b. When current flows through the filament in the cathode, electrons are produced by thermionic emission. \mathbf{V}^1 This electrons are accelerated towards the target where they are suddenly stopped \mathbf{V}^1 producing x-rays.

- C (i) By increasing the heating/filament current $\sqrt{}$
 - (ii) By increasing the accelerating potential difference. $\sqrt{}$

$$(iii)Q = It$$

$$Q = \frac{10}{1000} \times 1s \qquad \sqrt{}$$
$$= 0.01 \text{ C}$$

No. of electron =
$$\frac{Q}{e}$$

$$= \frac{0.01}{1.6 \times 10^{-19}}$$

$$= 6.25 \times 10^{16} \sqrt{}$$

(iv) K.E =
$$\frac{1}{2}$$
 mv²
eV = $\frac{1}{2}$ mv² $\sqrt{ }$

1.6 x
$$10^{-19}$$
 x 5000v = $\frac{1}{2}$ x 9.1 x 10^{-31} x V^2

$$V^2 = 1.6 \times 10^{-19} \times 5000 \times 2$$

$$V = \sqrt{1.7582 \times 10^{15}}$$

$$V = 4.193 \times 10^7 \,\text{ms}^{-1} \,\text{V}$$

- v. High density $\sqrt{}$ hence It absorbs stray x-rays
- 1.d. It <u>varies voltage</u> on the X-plates For horizontal deflection of the spot formed on the screen $\sqrt{}$
 - (ii) a) The spot will move up or down $\sqrt{\text{depending on polarity of the plates}}$ b)A vertical line will be seen on the screen $\sqrt{\text{or a spot will move up and down continuosly}}$
- **16.**(a) The direction of the induced e.m.f is such that the induced current which it causes to flow produces a magnetic effect that opposes the change producing it. $\sqrt{}$
 - (b) North √
 - (c) Relative motion between the field and conductor $\sqrt{\text{(change in flux linkage)}}$
 - (d) i)the current in the 1st coil build up to maximum, magnetic field produced cuts across the 2^{nd} coil, \sqrt{a} changing magnetic flux linkage is created \sqrt{a} in the coil inducing an e.m.f \sqrt{a} , hence current in the 2^{nd} coil cause a deflection in the galvanometer

(Changing magnetic flux linkage $\sqrt{\sqrt{}}$)

(ii) There will be <u>greater deflection</u> $\sqrt{}$ since it will have greater <u>changing magnetic field</u> due to easy magnetization of the soft iron core. $\sqrt{}$

(i)

Power = Voltage x Current, $P = 240 \times 0.1$

$$= 24 W \sqrt{}$$

$$iiVplp = Vsls$$
 $\sqrt{}$

$$240 \times 0.1 = 12 \times I_s$$

$$I_s = \frac{240 \times 0.1}{12}$$

$$Is = 2A$$
 $\sqrt{}$

(i) Efficiency =
$$\frac{power\ output}{power\ input} \times 100$$
, $\sqrt{}$

$$80 = \frac{power\ output}{24} \times 100,$$

Power output =
$$\frac{80x24}{100}$$

Power output = 19.2 W
$$\sqrt{}$$

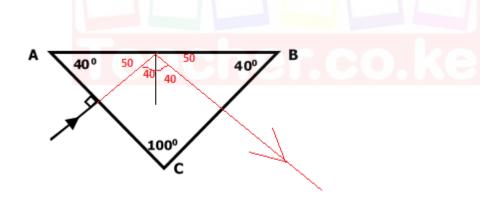
19.2 = 12 x I,
$$\sqrt{}$$
 $I = 1.6 A$

17

i) Is a coherent sound wave source \checkmark

- ii) Alternate loud (in regions of constructive interference)
- ✓ and

soft sound (in regions of destructive interference) \checkmark is heard


along PQ.

- iii) When the frequency of the signal is increased, the separation between the alternating loud and soft sound is reduced i.e. more close \checkmark
- iv) a <u>constant</u> loud sound √ will be heard.
- v) ✓ There will be formation of a transverse wave.

18.a.Is the ratio of the velocity of light in vacuum to the velocity of light in the medium

- **b.** (i) Light must be travelling from a denser to a less dense medium.
- (ii) The angle of incidence must be greater than the critical angle.
- **C.** Its an angle of incidence in the optically denser medium for which the angle of refraction in the less dense medium is 90°

d.

