

MARANDA HIGH SCHOOL Kenya Certificate of Secondary Education THE MOCK EXAMINATIONS, 2025

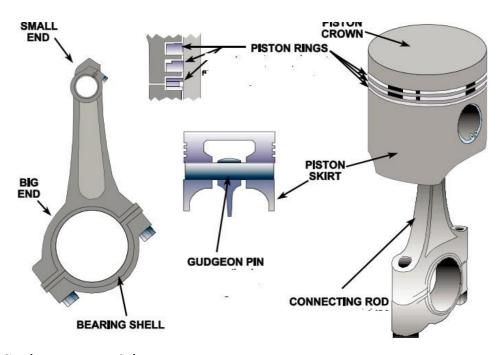
450/2 AVIATION PRACTICAL

PAPER May/June, 2025 TIME: 2½ Hrs

Instructions to the examiner and

Marking scheme

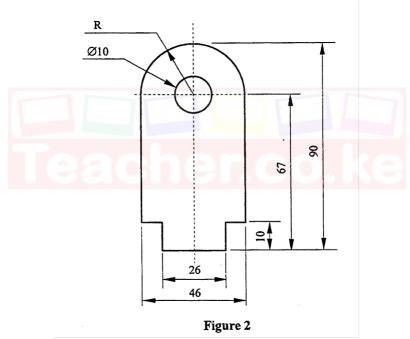
Instructions to the examiner


To be placed on a suitable drawing table in a well-lit area		
Drawing paper,		
Drawing Board,		
Pencils- HB ,		
Eraser, Drawing Set,		
Straight Edge, Rags.		

INSTRUCTIONS

 $\boldsymbol{Figure}\;\boldsymbol{I}$ show an assembly of an aircraft engine. On the space provided,

- a) Sketches four assemblies of component detailed **M**
- b) Label eight parts of the assemblies in component detailed M. (I0 marks)


Assemblies (4 x 1.5 = 6marks) Labelling – (8 x 0.5 =4marks)

Instructions to the examiner

- To be placed on a working bench
- Mild steel plate (50mm×100mm×3mm thick),
- Long pillar drill,
- Ø10mm drill bits,
- Steel rule, Scriber,
- Dot punch,
- Set of files, groves,
- Goggles,
- Sufficient rags.

INSTRUCTIONS

Using the tools, equipment and materials provided, make the aircraft undercarriage bracket as shown in **Figure 2**. (10 marks)



AREAS TO BE MARKED	MAXIMUM SCORE	AREAS TO BE MARKED	MAXIMUM SCORE
Dimensions		Correct Position of the hole	1
Length 90	1	Curve	1
Width 46	1	Quality of curve	1
Width 26	1	Deburring	1
Steps 10mm	1	Completeness	1
Drilling	1	TOTAL	10

STATION 3 INSTRUCTIONS

Study the aerodromes facilities and operations sketch attached and complete the tables below.

(a) Name the facilities marked 1, 2, 3, 4 and state the use of each.

(4 marks)

Facility	Use
1. Control tower	Where the ATC monitors and direct aircraft movement on the ground and in the air near the airport, ensuring safety and efficiency.
2. Terminal building	A building whwer passengers transfer between ground and transportation and aircraft, handling tasks ticket

	purchase, check in, baggage handling, security and boarding.	
3. Hangar	Is a large enclosed building designed to house, protect, and facilitate the maintenance and repair of aircraft.	
4. Fire station	Respond to aircraft emergencies, including fires and accidents, and ensure the safety of passengers and crew.	

(b) Identify operational activities of the aircraft labeled **A**, **B**, **C** and **D** and state the reason for each observation. (4 marks)

Operational Activity	Reason	
A. Parking	At the ramp	
B . Aircraft landing	Aircraft speed is higher	
C. Aircraft taking off	Aircraft speed is lower, hence preparing to take off	
D . Towing	The connection of the tow bar and the tug master/truck	

(c) State the function of the facility labeled **E** and **F**.

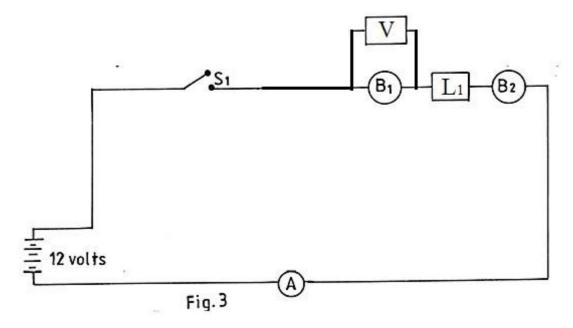
(2 marks)

Facility	Function	
E	Speed and direction of the wind	
F	Give magnetic north of the earth	

STATION 4

Instructions to the examiner

Place the following on a suitable bench near a power source.


- 1. Battery 12 volts (fully charged).
- 2. Toggle switch marked S_1 .
- 3. Serviceable voltmeter marked V.
- 4. Two 12 volts vehicle bulbs with holder marked B₁ and B₂.
- 5. Insulated 1.5mm copper wire 30cm marked L₁.
- 6. Insulated 2.5 mm copper wire 30cm marked L₂.
- 7. Connecting wires with crocodile clips (quantity 10).
- 8. Serviceable ammeter marked A.

INSTRUCTIONS

a) Connect the components as shown in **circuits 1**.

Let the examiner check your work.

(4 marks)

b) (i) Select switch S1 to an on position. Record your observation. Observation.	(2 marks)
(ii) Select S1 to off position, replace L1 and L2 and record your observa	
Observation	
(iii) State the reason for the observation in (b) (i) and (b)(ii).	(1 mark)
Reason	
(iv) State one application on an aircraft lighting system.	(1 mark)
Application	
"leacher co ke	

PROVIDE SAMPLE DATA

AREAS TO BE MARKED	MAXIMUM SCORE	CANDIDATES SCORE
Battery connection to S1	1×0.5=0.5	
S1 connection to V	1×0.5=0.5	
V connection to B1	1×0.5=0.5	
B1 connection to L1	1×0.5=0.5	
L1 to B2 connection	1×0.5=0.5	
B2 connection to A	1×0.5=0.5	
A connection to battery	1×0.5=0.5	
Safety during connection	1×0.5=0.5	
Total	4 marks	

STATION 5

<u>Instructions to the examiner</u> Place the following on a suitable bench.

- 1. Wire twister.
- 2. Socket box (set).
- 3. Torque wrench (0 to 60N).
- 4. Rags.

- 5. Open end spanner (set).
- 6. Ring spanner (set).
- 7. Soft hammer.
- 8. Turbocharger assembly labeled **D**.
 - a) With turbine with signs of pitting panted red.
 - b) Compressor with signs of creeping painted green.
 - c) Broken volute painted white.
 - d) Centre part with signs of corrosion painted blue.
- 9. Locking wire (0.8 mm).

INSTRUCTIONS

Marking points

the task.

Question	Areas to be marked	Maximum score	Candidate's score
(b)(i)	Correct use of tools	1×0.5=0.5	
	Dismantling	1×0.5=0.5	
(c)	Cleaning of parts	1×0.5=0.5	
	Assembly of all parts	1×1=1	
	Tightening the nuts	1×0.5=0.5	
	Torque loading the nuts	1×1=1	
	Safetying the nuts	1×1=1	
	Total	5 marks	

STATION 6

Instructions to the examiner

To be placed on a working bench

- K- Mild Steel rod Ø3 mm, 60 mm long.
- L- Brass rod Ø 3mm, 60 mm long.
- M Aluminium rod Ø3 mm, 60 mm long.
- N- Copper rod Ø3 mm, 60 mm long.

(4 marks)

- 1pc pipe or a tube Ø5mm diameter 100 mm long
- 1 pc hacksaw

INSTRUCTIONS

Carry out the following tasks using the tools and materials provided.

- (a) (i) Hold vertically and at mid-length each of the rods labeled ${\bf K}, {\bf L}, {\bf M}$ and ${\bf N}$ in a bench vice.
 - (ii) Using the tube labeled **P**, bend each rod fore and aft until it breaks. Record the number of bends for each rod.

KMild Steel
L
MAluminium
NCopper
(iii) State the mechanical property being tested.
Toughness/Turfness
(iv) Comment on the relationship between the number of bends each rod takes to
break to the mechanical property tested.
the high and he would be of head of he does he will be an administration

...the higher the number of bends the tougher the material......

(c) State one application and one reason of selecting each of the materials labelled **K**, **L** and **M** in an aircraft.

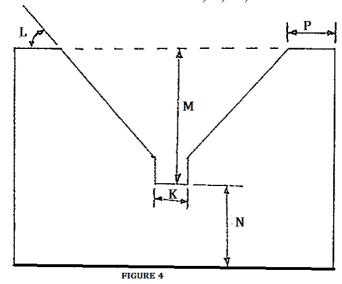
M aterial	Application	Reason
K. Mild Steel	Fasteners	Turf, malleable
L. Brass	Bushes	Non corrosive/self-lubricant
M. Aluminium	Aircraft skin	Non corrosive, light in weight

(3 marks)

STATION 7

Instructions to the examiner

Place the following on a suitable bench.


- 1. Vee block
- 2. Piston engine push rod (serviceable) labeled A.
- 3. Piston engine push rod (slightly) dented labeled **B**.
- 4. Dial indicator gauge set labeled **C**.
- 5. True surface table.
- 6. Micrometer set.
- 7. Height gauge.
- 8. Bevel gauge
- 9. Steel rule
- 10. Metre rule
- 11. Rags.

INSTRUCTIONS

Using the tools and equipment provided perform the following tasks.

(a) Take and record the Vee block measurements K, L, M, N and P as shown on Figure 4.

Measurements (5 marks)

(b)(i) Check and record the roundness of each of the rods A and B using the set up C.

Roundness

Auniform roundness/cyndricity.....

B..... dented/bent. (2marks)

(ii) State the reason behind the observation of rods **A** and **B** in (b)(i)

ReasonB - excessive stress on the push rod......(1 mark)

(iii) Give the recommendation for the use on an aircraft from your observations in (b)(i)

Recommendations

A ...serviceable(push rod A was ok)

B. to be replaced – as the valve will not be able to open and close (valve timing) (2 marks)

Instructions to the examiner

Place the following on a suitable bench

- 1. Straws(2 per candidate)
- 2. 3 OZ. paper cups (4 per candidate)
- 3. Hole punch
- 4. Push pins (2 per candidate)
- 5. Pencil (1 per candidate)
- 6. Thermometer marked **W1**
- 7. 5 OZ. plastic cups (1 per candidate)
- 8. White masking tape 1" (1 roll)
- 9. Aneroid barometer marked **W2**
- 10. Rain gauge marked W3
- 11. Modeling clay
- 12. Plastic bottle.

INSTRUCTIONS

Using the tools, instruments and materials provided, perform the following tasks (a) Study the instrument labeled W_1 , W_2 , W_3 and complete **Table 1**.

- (i) Identify the type of instrument
- (ii) Application on an aircraft
- (iii) The principle of operation

Table 1

ITEM	IDENTIFICATION	APPLICATION	PRINCIPLE OF OPERATION
\mathbf{W}_{1}			CO.NE
\mathbf{W}_2			
W ₃			
***3			

(4½ marks)

(b) Construct a model anemometer.

(5½ marks)

Areas to be marked	Maximum score	Candidate's score
Correct punching of two holes in cups at the side of each cup.	1×0.5=0.5	

Correct punching two holes directly across from each other ½	2×0.5=1
inch underneath centre cup.	
Making the bottom hole in the centre cup.	1×0.5=0.5
Fixing the four cups at the end of the straws facing one	1×0.5=0.5
direction.	
Pushing one side of the pencil through the bottom hole in the	1×0.5=0.5
centre cup freely rotating	
Correct locking of straw to the eraser	1×0.5=0.5
Mounting the assembly to soft board	1×1=1
Checking the spinning ability	1×1=1

Instructions to the examiner

Place the following on a suitable bench

- Ratchet Torque Wrench Labelled 1,
- Spur Gear Oil Pump Labelled **F** with housing labelled **G**, driver gear labelled **J**, driven gear labelled **K**, and pump outlet labelled **L**.

INSTRUCTIONS

Using tools and component 'F' provided, perform the following tasks.

(A) Study the tools labelled 1 and identify: (2 marks)

- (I) Name of the tool; Torque wrench.
- (II) Use of the tool; Tightening the nuts and bolts to the torque to avoid over torqueing or under torqueing.
- (III) Maintenance check required; Calibration.
- (IV) Type; Ratchet.
- (B) Study component 'F' and identify:

(1½ marks)

- (I) Component; engine oil pump.
- (II) Type; spur gear type.
- (III) System applicable; *lubrication system/ hydraulic system*.
- (C) Dismantle component 'F'
 - (I) Identify parts **G**, **H**, **J**, **K** and **L**

(2½ marks)

- G Pump casing
- H Impeller gear
- J Driver Gear.
- K Idler Shaft
- $L-Drive\ Shaft.$
- (II) State the use of parts painted white and blue.

(1 mark)

- White......filling port.
- Blue.....locking.
- (III) Examine parts G, J, K, and L and identify the maintenance checks for each.

(2 marks)

G...Cracks and wear.

J.....Play on spur gear, wear, cracks etc.

DeltaVery high speed.....

Sweepback......High speed.....

Rectangular.....Low speed.....

(ii)

(iii) (iv)