PRACTICAL MARKING SCHEME

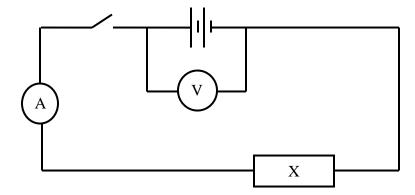
232/3 **PHYSICS** Paper 3(PRACTICAL)

Kenya Certificate of Secondary Education (K.C.S.E)
PHYSICS

FORM FOUR

MARKING SCHEME

QUESTION	PART	MAXIMUM SCORE	CANDIDATE'S SCORE
1	A	05	
	В	15	
2	A	10	
	В	10	
		40	


QUESTION 1

You are provided with the following apparatus;

- A carbon resistor labelled X.
- A carbon resistor labelled Z
- A voltmeter (0 5V)
- An ammeter (0 1A)
- 5 10Ω carbon resistors.
- Centre zero galvanometer.
- 2 new dry cells and cell holder.
- 8 connecting wires at least 4 with crocodile clips at one end.
- lockey
- A resistance wire labelled AB mounted on mm scale.
- A switch.

PART A

a) Set up the circuit below.

b) Record the voltmeter reading E when the switch is open.

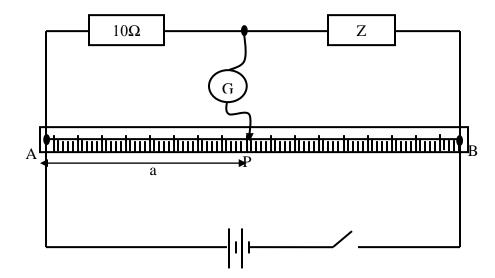
$$E = \dots 3.0 \pm 0.2 \dots V$$
 (1mk)

c) Close the switch and record the voltmeter and Ammeter readings V and I respectively.

$$V = \dots V$$
 (1mk)

$$I = \dots O.26 \pm 0.02 \dots A$$
 (1mk)

d) Account for the difference between E and V. (1mk)

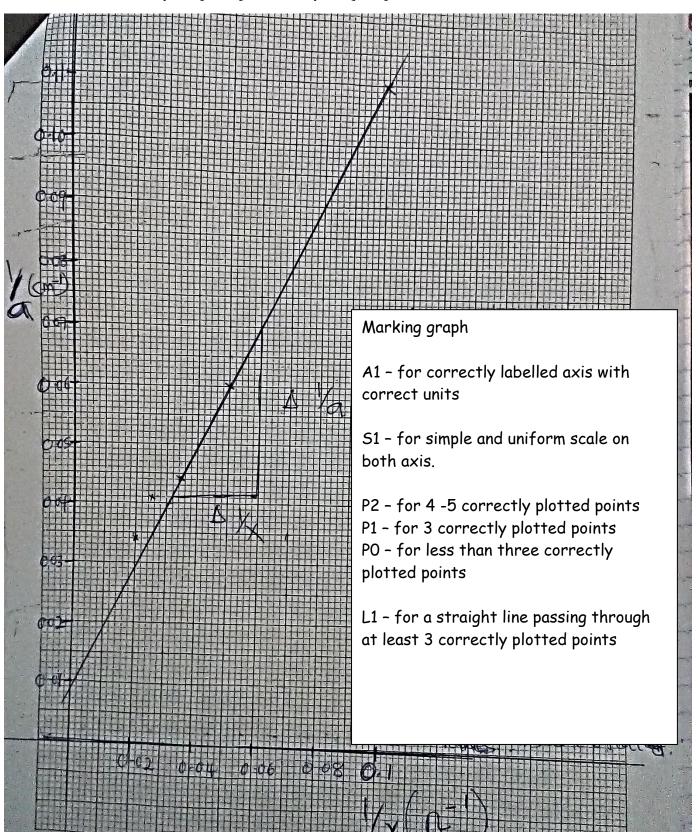

.....lost voltage.....

e) Calculate the resistance R for resistor X. (1mk)

 $R = \frac{V}{I} = \frac{2.7}{0.26} = 10.38\Omega$ (student's work.....answer with correct units correct to 4 s.f. or exact)

PART B

a) Set up the circuit as shown in the figure below.



- b) Close the switch. Tap the jockey at various points on the wire AB and locate point P at which the galvanometer shows zero deflection. Measure and record in the table below the length a where a = AP.
- c) Repeat procedure b) using two 10Ω resistors in series, then three resistors in series, then four resistors in series and five resistors in series.
- d) Record your readings in the table below and complete the table where X is the effective resistance for the series combination. (5mks)

Number of 10Ω carbon resistors	One	Two	Three	Four	Five	
Χ (Ω)	10	20	30	40	50	1mk
a (cm)	9.1	16.5	23.0	24.1	29.5	±2.0cm @ ¹ / ₂ max 2mks
¹ / _X (Ω ⁻¹)	0.1	0.05	0.03333	0.025	0.02	$ _{1mk}$ 4 s.f. or
1/a (cm ⁻¹)	0.1099	0.06061	0.04348	0.04149	0.03390	l _{mk} exact

e) Plot a graph of $^{1}/_{a}$ (cm⁻¹) against $^{1}/_{x}$ (Ω^{-1})

(5mks)

f) Determine the slope m of the graph.

$$slope = \frac{0.07 - 0.041\sqrt{}}{0.06 - 0.031\sqrt{}}$$
$$= \frac{0.029}{0.029} = 1\Omega/cm\sqrt{}$$

(3mks)

Follow student's work. Deny if L mark is 0 Answer correct to 4 s. f. or exact with units. Deny $\frac{1}{2}$ mk if no units

g) Given that $\frac{1}{a} = \frac{R}{K} \cdot \frac{1}{X} + \frac{1}{K}$ where K = 100cm, use the graph to determine R. (2mks)

$$\frac{R}{K} = slope$$

$$\frac{R}{100} = 1$$

 $R = 100\Omega/cm$

Follow student's work.

Answer correct to 4 s. f. or exact with units. Deny $\frac{1}{2}$ mk if no units

QUESTION B

PART A

You are provided with the following;

- Metre rule.
- Screen
- Glass beaker (250ml)

• Water plasticine.

A candle.

Proceed as follows:

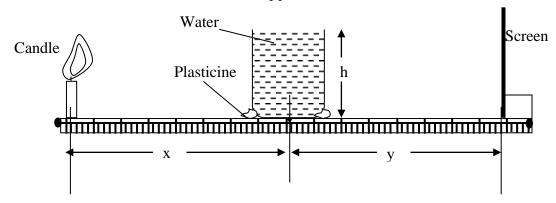
- a) Add a volume V= 200ml of water into the beaker.
- b) Measure the value of h, the height of water in the beaker.

(1mk)

c) Calculate the value of internal radius R of the beaker using the formula $R = \sqrt{\frac{v}{\pi h}}$ where $\pi = \frac{22}{7}$

$$R = \sqrt{\frac{200}{\frac{22}{7} \times 7.0}}$$
$$R = \sqrt{9.095}$$

R = 3.016cm


Follow student's work.

(2mks)

Answer correct to $4\,s.\,f.$ or exact with units.

Deny $\frac{1}{2}$ mk if no units

d) Fill the beaker with water and set the apparatus as shown below.

- e) Position the candle which acts as an object above the metre rule and 10R from the centre of the water 'lens'.
- f) Measure the object distance x.

(1mk)

- g) Move the screen towards or away from the water lens to obtain a sharp and focused bright image (line) on the screen.
- h) Measure the value of image distance y.

(1mk)

i) Repeat the experiment for the other values of x in the table below and note and record the corresponding values of y. Complete the table.

Beaker position	10R	9R	8R
x	30.2	27.1	24.0
у	6.0	8.8	9.8
$S = \frac{xy}{x+y}$	5.005	6.643	6.959

 \pm 0.2cm $\frac{1}{2}$ mk @ in columns 2 n 3

1mk correct to 4 s.f. or exact all values

I. Determine the average value of S.

(2mks)

$$S_{average} = \frac{5.005 + 6.643 + 6.959}{3} = 6.202$$

Follow student's work.

Answer correct to 4 s. f. or exact with units. Deny $\frac{1}{2}$ mk if no units

II. What does S represent.

(1mk)

Focal length of the water lens

PART B

You are provided with the following;

- Vernier calipers. (can be shared)
- Micrometer screw gauge (can be shared)
- Boiling tube.
- Test tube.
- Some water in a beaker
- Half metre rule.
- 2 ball bearings.
- Some sand.
- Spatula
- Complete retort stand.
- i. Measure and record the diameter of one ball bearing using the micrometer screw gauge.

(1/2mk)

ii. Determine the volume V of the ball bearing.

$$V = \frac{4}{3} \times 3.142 \times \left(\frac{0.578}{2}\right)^3$$

Follow student's work.

Answer correct to 4 s. f. or exact with units. Deny $\frac{1}{2}$ mk if no units

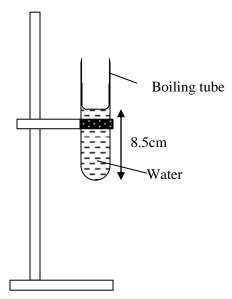
iii. Measure and record the outer diameter D of the test tube using the vernier calipers.

(1/2mk)

iv. Calculate the cross-sectional area A of the tube.

(1mk)

$$A = 3.142 \times \left(\frac{1.85}{2}\right)^2$$


Follow student's work.

Answer correct to 4 s. f. or exact with units.

Deny $\frac{1}{2}$ mk if no units

Acm²

v. Mount the boiling tube on the clamp as shown below and put some water to a height of about 8.5cm from bottom.

- vi. Gently lower the test tube into the water in the boiling tube.
- vii. Add some sand into the test tube bit by bit until the test tube floats upright in the water.
- viii. Note and record height ho of the water in the boiling tube from the bottom.

$$ho = \dots 13.0 \pm 0.5 \dots cm$$
 (1mk)

- ix. Gently lower one ball bearing into the test tube and note and record the new level h in the table below.
- x. Add the other ball bearing and note and record the corresponding height h.
- xi. Compute the values of h- ho and complete the table. (2mks)

No. of ball bearings (N)	Height h (cm)	h – ho (cm)
1	$13.5 \pm 0.2 (\frac{1}{2} \text{ mk})$	0.5
2	14.0 ± 0.2 ($\frac{1}{2}$ mk)	1.0

1mk for correct evaluation of both values of (h - ho) xii. Calculate S the average value of X where $X = \frac{h - ho}{N}$ (1mk)

$$S_{average} = \frac{\mathbf{0.5 + 0.5}}{2} = 0.5cm$$

Follow student's work.

xiii. Given that

$$S = \frac{V\ell s}{A\ell e}$$

Answer correct to 4 s. f. or exact with units. Deny $\frac{1}{2}$ mk if no units

where $\underline{\ell}$ s is the density of steel and $\underline{\ell}$ e the density of water, determine the ratio of

$$\frac{\ell s}{\ell e}$$

(2mks)

$$0.5 = \frac{V}{A} \times \frac{\ell s}{\ell e}$$

Follow student's work.

$$\frac{\ell s}{\rho_{\rho}} = 13.29$$

Answer correct to 4 s. f. or exact with units. Deny answer mark if wrong units are used

xiv. What is the significance of the ratio $\frac{\ell s}{\ell e}$

(1mk)

Relative density of steel