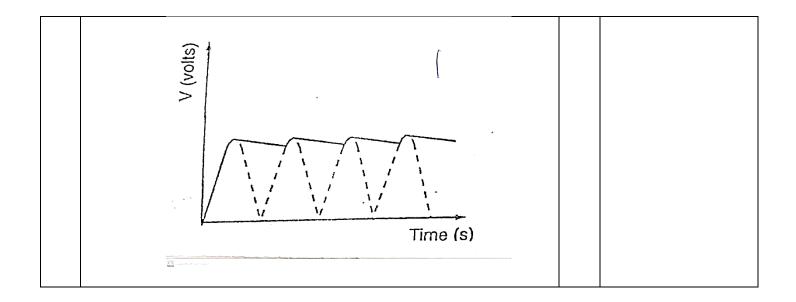
PHYSICS PAPER 232/2 FORM FOUR MARKING SCHEME

	SECTION A (25 marks)		
1.	20° 70° 70° 70° M M1 M1 20° 10° 10° M 21	1	CORRECT RAYS Correct angles
2	The ends of the pin acquire the same polarity thus they repel each other.	1	
3.	C F	2	Correct rays @ 1mk Position and nature of image (real, upright, magnified)
4.	The sound becomes faint/ magnitude of sound reduces On cooling the partial vacuum is created which minimizes the transmission of sound which requires a medium	1	
5.	the transmission of sound which requires a medium. Radio waves , Microwaves, Infrared, X-rays, Red light.	1	

6.	Core	1	Tied Both must be correct.
7.	i. Positive	1	
	ii. Electrons flow to the sphere from the ground	1	
8.	a) 1.52V b)	1 1	Must extrapolate. If not deny. Correct symbols Correct
			arrangement (both marks tied)
9.	V = f λ	1	Formula
	$= 8 \times 0.04$	1	Substitution
40	=0.32m/s	1	Answer
10.	 To increase the length of the conductor hence increasing the resistance. High melting point 	1	
11.	$cost = \frac{1500}{1000} \times \frac{30}{60} \times 6.70$	1	Evaluation
4.5	= Ksh. 5.025	1	Answer (check units)
12.			
		1	Correct magnetic


	N S	1	field pattern Direction of the force
	SECTION B (55 marks)		
13.	a) i. The angle of incidence is equal to the critical angle of the transparent medium.	1	
	ii. $\eta = \frac{1}{\sin c}$	1	Formula
	$\eta = \frac{1}{\sin 50}$	1	Substitution
	= 1.305 b) v= -10cm	1	Answer
	f = -15cm		
	$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$	1	Formula
	$\frac{1}{-15} = \frac{1}{u} + \frac{1}{-10}$	1	Substitution
	$\frac{1}{u} = \frac{1}{-15} - \frac{1}{-10} = \frac{-2+3}{30}$		
	U = 30cm	1	Answer
	Candle Lens	1	Diagram
	 The lens is placed between the lit candle and the screen. Adjust the position of the lens until a sharp focused image is formed on the screen. Record the object and image distance u and v. 	1	

	• Use the les formula to determine the focal length f $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$	1
		10
14.	i. Remains constant.	1
	ii. The leaf divergence increases.	1
	There is increase in potential difference between	1
	the plates. Since there is decrease in capacitance (but the amount of charge remains constant and capacitance is given by C = Q/V)	1
	b)	
	$i. C_T = \frac{7 \times 1}{7 + 1}$	1
	= 0.875μ F or 8.75×10^{-7} F	1
	ii. Q= CV = $8.75 \times 10^{-7} \times 12$ = 1.05×10^{-5} C	1
	$V_{3\mu F} = 12 - \frac{1.05 \times 10^{-5}}{1 \times 10^{-6}}$	1
	=12 – 10.5	
	= 1.5V	09
15.	a) i. The bulbs cannot be operated independently.	1
	ii. •	1
	•	

	i. Galvanometer deflects momentarily in one direction when the conductor moves upwards. The galvanometer deflects momentarily in the opposite direction when the conductor moves downwards.	1 1
	 ii. Using stronger magnets Increasing rate of movement of the conductor/ moving conductor faster. 	2
	 Primary coil Since more current flows through the primary coils they need to be thicker to minimize resistance. 	1 1
		08
16.	a) i. The divergence of the leaf decreases/reduces.	1
	ii. No change on divergence of the leaf is observed.	1
	b) $\frac{h}{e} = gradient$	1
	$= \frac{1.6 - 0.2}{(7 - 3) \times 10^{14}}$ $= 3.5 \times 10^{-15}$	1
	$h = 3.5 \times 10^{-15} \times 1.6 \times 10^{-19}$	
	$h = 5.6 \times 10^{-34} Js$	1
	c) i. P <u>steps up the voltage</u> used to <u>accelerate</u> the <u>beam of electrons</u> towards the target.	1
	ii. Electrons hitting part C possess <u>high kinetic</u> <u>energy</u> /moves at very <u>high speed</u> . Most of its kinetic energy (about 99.5%) is	1 1
	converted to heat energy.	

	iii. By increasing the accelerating voltage/potential difference between the cathode and anode.	1 09	
		09	
17.	 i. To produce <u>two coherent sources</u> of light. 	1	
	ii. <u>Alternating bright and dark fringes</u> are observed.	1	
	Bright fringes represent regions of constructive interference where the waves arrive in phase whereas the dark fringes represents regions of destructive interference where waves arrive out of phase.	1	
	$b) f = v/\lambda$		
	$=\frac{2}{1}=2Hz$		
	V = f λ		
		1	
	=2 x 0.4	1	
	=0.8m/s	'	
	-0.0111/5		
	c) $T = 4 \times \frac{10}{1000} = 0.04s$	1	
	$\varepsilon = 1$		
	$f = \frac{1}{T}$ = 1/0.04 = 25Hz	1	
	= 1/0.04 = 25 n Z		
		1	
		1	
	(b) (c)		
		00	
8.		09	
8.	a) i. Beta particles	1	
	ii. 210 – 4 = 206	1	Must show working

b) $50 = 200 \times \left(\frac{1}{2}\right)^{\frac{T}{t_1}}$ $\frac{1}{4} = \left(\frac{1}{2}\right)^{\frac{12}{t_1}}$	1	Look out for alternative method
$2 = \frac{12}{t_{\frac{1}{2}}}$ $t_{\frac{1}{2}} = 6 \text{ minutes}$	1	
c) i. During the first half cycle, X is positive in respect to Q hence D1 is forward biased and D2 is reverse biased thus current flows through the load R using path XYRX.	1	
In the next half cycle when Q is positive in respect to X D2 is forward biased and D1 is reverse biased hence current flows through the load using the path QYRQ. In both cycles the current flows through the load	1	
resistor R in the same direction YR. ii.	1	
a.c.		Capacitor across the load
iii.	1	

