
PHYSICS PAPER 232/1 FORM FOUR MARKING SCHEME

SECTION A (25 marks)			
1.	Reading + error = Actual	1	Calculation of R
	R = 7.57-0.04 = 7.53cm	1	3 rd vernier scale aligning
	7cm 8cm	1	Complete vernier scale inserted correctly
2.	a. B	1	
	large area of force application implying less pressure is exerted.	1	
	b. $pressure of trapped air = P_{atm} - (P_{due to water} + P_{mercury})$	1	
	$P_{air} = \left(\frac{75}{100} \times 13600 \times 10\right) - \left(\frac{58}{100} \times 1000 \times 10 + \frac{20}{100} \times 13600 \times 10\right)$	1	
	P _{air} = 102,000 –(5800+27200) =102,000 – 33000		
	=69,000Pa	1	
3.	Uniform acceleration	1	
4.	Zero acceleration (constant velocity) (W = F + U) the body has attained a terminal velocity	1	
5.	When the temperature increases, the gas molecules gain more kinetic energy and move faster; the rate at which they collide increase.	1	
6.	More stable or stability increases when the candle melts the position of COG lowers	1	
7.	Diffusion involves movement of matter and it can only happen when in tiny particles.	1	
8.	Due to the resultant downward cohesive force on the molecules on the surface of liquid, the net force on molecule inside the liquid is zero.	1	

9.	$RD \ of \ paraffin = \frac{upthrust \ in \ paraffin}{upthrust \ in \ water}$	1	
	upthrust in water		
	0.3 – 0.2 0.1	1	
	$\frac{0.3 - 0.2}{0.3 - 0.15} = \frac{0.1}{0.15} = 0.67$,	
	0.15 0.15		
	$\rho = 0.67 \times 1000 = 670 kg/m^3$	1	
10.	A	1	
	When air is blown through A, pressure inside reduces but in B		
	remains the same.	1	
	The higher atmospheric pressure outside in A makes it collapse.		
	ALT. In A there is pressure difference between inside and outside		
	but in B ther is no pressure difference.		
11.	Conduction involves passing of heat energy from one	2	tied
	molecule to the next through vibration. Convection involves heated molecules moving up on		
	becoming lighter and are replaced by colder molecules		
	(convectional currents		
SE	CTION B (55 MARKS)		
	(
12.	a)		
	i. Pointerii. Note and record the initial length of the spring before	1 1	
	ii. Note and record the initial length of the spring before loading	'	
	Record the new length after loading	1	
	Get the difference	1	
	iii. Weight of the mass/stretching force	1	
	iv.		
	Assuming elastic limit of the spring is not exceeded		
	 Note and record the extension of the spring and the corresponding value of the weight of the mass/stretching 	1	
	force.		
	 Increase the mass at intervals and note and record 		
	several values of extension and weight of masses in a	1	
	table.Plot a graph of stretching force against extension.	1	
	Note the nature of the graph (it will be a straight line)		
	through the origin.		
	b) One spring = 2cm		
	K=F/e	1	
	F = 150/1000 x 10 = 1.5N		

	K= 1.5/ ₂	1
	= 0.75N/cm or 75N/m	i
		11
13.	a)	
	$F \times 0.8 = (90 + 20) \times 10 \times 0.2$	1
	4404000	1
	$F = \frac{110 \times 10 \times 0.2}{0.8} = 275$ N	1
	0.8	
	off out dist 00	
	b) $VR = \frac{effort\ dist}{load\ dist} = \frac{0.8}{0.2}$	1
	load dist 0.2	'
		1
	= 4	
	load 000	
	c) $MA = \frac{load}{effort} = \frac{900}{275}$	1
	' effort 275	
	- 0.070	
	= 3.273	1
	$M \Delta$	
	d) $eff. = \frac{MA}{VR} \times 100$	1
	VR	•
	2 272	
	$eff. = \frac{3.273}{4} \times 100$	1
	4	
	= 81.82%	1
	-01.02/0	
	e) Some energy is used to lift the weight of the machine	
	(20kg)	1
	(==::9/	12
14.	a)	
	i. The bulb of the thermometer is dipped in the	1
	boiling water. Should be in the steam.	
	ii. Impuriites in water would raise its boiling point	1
	hence the mark would be higher. iii. To ensure that the steam is at normal/standard	1 1
	atmospheric pressure by allowing excess steam	'
	out.	
	b)	
	100°C ==→11-3=8cm	1
	80°C→ 80/100 x8 = 6.4cm	
·	•	

3.34 x10 ⁵ x m _i +	168,000mi + 16800 + 800	
502,000mi +17,	600	1
iii. 502,000mi +17,	iii. 502,000mi +17,600 = 150,720	
	$mi = \frac{150,720 - 17,600}{502,,000}$	1
= 0.265kg or 26	5g	1
		10
in velocit	tion is continously changing. This implies change y hence acceleration	1
b)	$\omega = 2\pi f = 2 \times 3.142 \times 6 = 37.704 rads / s$	1
a =v²/r = r	$\omega^2 = 37.704^2 \times 0.6$	1
a = 852.9	55m/s	1
c) i.	$\frac{50-0}{25-0} = 20N/kg$	2
ii.	$\frac{P}{m} = slope$	1
	$P = m \times slope = 20 \times 0.2 = 4.0N$	1
iii.	P represent Centripetal force	1
TOTAL		55
SECTION	B (55 MARKS)	