FORM 4

CHEMISTRY PAPER TWO

MARKING SCHEME

Accept open structural formula.

CH₃ may or may not be open.

OH may or may not be open.

(iii) 1) Water/ steam/ conc. H₂ SO₄

1mrk

2) Acidified KMnO₄/KMnO₄/Acidified K₂ Cr₂ O₇

Any 1mrk

(ii)
$$2CH_3 CH_2 CH_2 OH + 2Na \longrightarrow 2CH_3 CH_2 CH_2 ONa + H_2$$

1 mrk

Ignore missing or wrong state symbols.

Penalize fully if not balanced.

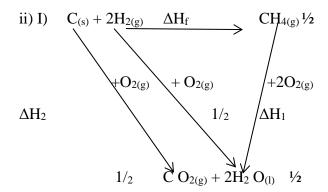
(c) i) Oxidation

ii) Decarboxylation 1mrk

(d) Cleansing agent has <u>polar end</u> ½ and non – polar end ½ Non – polar end <u>attracts</u> ½ <u>Grease</u> while polar end attracts water molecules ½ This lower the surface tension of water/ <u>emulsification of grease</u> ½

- 2(a) i) D has a <u>lower melting point</u> than F $\frac{1}{2}$ because F has <u>more valence electrons $\frac{1}{2}$ and <u>smaller atomic radius</u> hence stronger <u>metallic bonds</u> which require a lot of energy to break.</u>
- ii) G has a larger <u>atomic radius than</u> N. N has more protons than G/N has <u>a greater nuclear attraction</u> than G./N has a <u>more effective nuclear charge</u> than G.
- iii) D 1mrk; Has the largest atomic radius / thus loses it's outermost electrons most readily.
- iv) Oxide of L is <u>acidic $\frac{1}{2}$ </u> while that of C is <u>basic/alkaline1/2</u> Oxide of L dissolves in water to form H⁺ ions $\frac{1}{2}$ while that of C dissolves in water to form <u>OH</u> ions $\frac{1}{2}$

(b) i) M


ii) L

- (c) In SiCl₄ molecules are joined together by <u>weak van der waals forces ½</u>. Forming a <u>simple molecular structure</u> while in Mg Cl₂ ions are linked by <u>strong ionic bonds / electrostatic forces of attraction ½ forming giant ionic structure ½</u>
- 3 (a) i) Heat change that occurs when one mole of a substances is formed from its constituent elements (in their normal State)

 1mrk

Or

Heat absorbed or evolved when one mole of a substance is formed from its constituent elements in their normal states.

Equation for CH₄ formation ½

Equation for CO₂ and H₂O combustion 1mrk

Equation for CH₄ combustion 1/2mrk

Total= 2mrks

II)
$$\Delta h_f = \Delta H_2 - \Delta H_1$$

= -393+ 2(-286) + 890

$=-75kJMol^{-1}$

Penalize ½ for wrong or missing units.

(b) i) Plotting

9 correct plots 1

8 correct plots ½

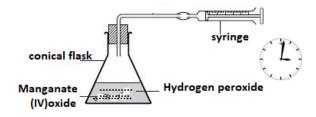
< 8 correct plots 0

Scale

Horizontal scale – ½

Vertical scale ½

Line Extrapolation ½


Inverted ½

- ii) I) Value read from graph = ½
 - II) Acid volume from graph ½

Base volume = 50cm^3 acid volume from graph $\frac{1}{2}$

- iii) ΔT value (Final Temp from graph -25⁰C) ½
- (c) NH_3 is <u>a weak</u> base hence some of the heat evolved is used to <u>completely ionize</u> $NH_{3(aq)}$
- 4 (a) measure of how much of the reactants are consumed or how much products are formed per unit time.

(b)

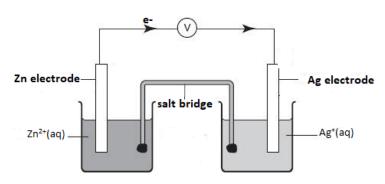
(c) i) Reaction in which rate of forward reaction is equal to the rate of reverse/ backward reaction.

1mrk

ii)

- (d) i) Crush(1mrk) the seeds using a mortal and pestle, add suitable solvent such as propanone / acetone/ ethanol/ propanol ½ and continue crushing. The liquid is filtered / decanted/sieved ½ in an evaporating dish. The dish is placed out into the sun to allow the solvent to evaporate leaving the oil behind. 1/2
- ii) The liquid left after evaporation is placed on apiece of paper. If it leaves a translucent mark then it approves it is oil.

1mrk

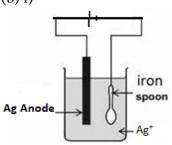

$$Zn/Zn^{2+}_{(aq)} // Ag^{+}_{(aq)}/Ag_{(s)}$$

1mrk

Or

Zn and Ag half cells.

ii)


 $iii) \; Zn_{(s)}\!/\!Zn^{2+}{}_{(aq)/\!/}Ag^{+}{}_{(aq)}\!/\!Ag_{(s)}$

1mrk

iv) Completes the circuit Maintains charge balance 1mrk 1mrk

Replenishes the used ions in the two half cells

(b) i)

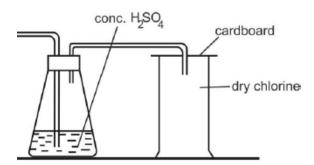
Workability 1/2

IQ = It

II) 2.34g
$$\longrightarrow$$
7200C
65g ?

$$= 65 \times 7200C$$

$$2.34 \times 2$$


$$= 200 000C$$
 $\frac{1}{2}$

6 i)
$$MnO_{2(s)} + 4HCl_{(aq)} \longrightarrow MnCl_{2(aq)} + Cl_{2(g)} + 2H_2 O_{(l)}$$
 1mrk

iii) By passing Cl_{2(g)} through a U – tube containing anhydrous CaCl₂

By passing $\text{\rm Cl}_{2(q)}$ through concentrated \rm H_2 \rm SO_4 in a flask or bulling tube.

Or

- (b) i) Aluminum chloride/Al Cl₃
 - ii) $2Al_{(s)} + 3Cl_{(s)} \longrightarrow 2AlCl_{3(g)}/Al_2 Cl_{6(g)}$

iii) Mol Al used =
$$0.84 = 0.0311$$

1 mrk

27

Mol of $Cl_2 = 0.0311x \ 3 = 0.047$

1 mrk

2

Volume of $Cl_2 = 0.047 \text{ x } 24 = 1.12 \text{ dm}^3$

Or

 $0.84 \times 3 \times 24 = 1.12 \text{dm}^3$

3mks

27

This part is consequential to part iii)

If more raha not used give a maximum of

2mrks

iv) Prevent moisture from entering its apparatus by absorbing it/ prevent hydrolysis of AlCl₂

To react with excess Cl₂ / preventing environmental pollution by Cl₂.

7 (a) i) Magnetite/ Siderite

1 mrk

ii) Carbon (ii) oxide

1mrk

iii) React with coke/charcoal / carbon to form carbon (iv) Oxide

Rise the temperature at the bottom of the finance to about 200K (165°C)

(b) A; C(s)+O₂
$$\longrightarrow$$
 (g) $CO_{2(g)}$

1mrk

B;
$$Fe_2 O_{3(s)} + 3CO_{(g)} \longrightarrow 2Fe_{(s)} + CO_{2(s)}$$

1mrk

C;
$$CaCo_{3(s)} \longrightarrow CaO_{(s)} + CO_{2(g)}$$

1mrk

(c) Decompose to quick lime (calcium oxide) which react to remove impurities and produce more carbon (iv) oxide gas.

1mrk

1mrk

(d)
$$CaO + Si O_{2(s)}$$

Ca Si O_{3(s)}

All Equations must be balanced and with correct

$$CaO + Al_2 O_{3(s)}$$

Ca Al₂ O_{4(s)}

state symbols

(e) Carbon (iv) Oxide gas causes global warming if allowed to escape.

1mrk

Carbon (iv) Oxide is highly poisonous/ toxic that can kill.