

BUKAKA CLUSTER EXAMINATIONS

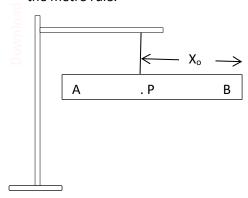
MARKING SCHEME

END OF TERM 1 2025

PHYSICS PAPER 3

FORM 4

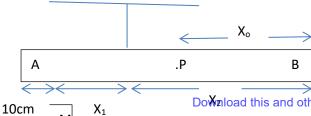
QUESTION ONE


You are provided with the following apparatus:

- Metre rule marked A and B.
- Retort stand, clamp and boss.
- Two pieces of thread 30cm long each.
- Mass M of 50g.
- Rubber bands, 10 pieces tied with a string, of mass Q.
- = Glass block.
- Soft boards.
- Plain papers.
- Four optical pins.
- Four thumb tacks.
- A protractor.

PART A

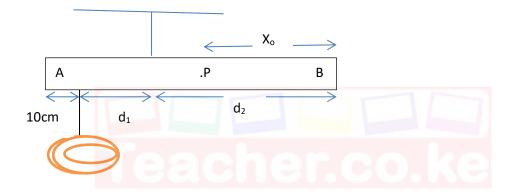
Proceed as follows:


- a) Balance the metre rule provided by hanging it on a stand using one of the threads provided.
- b) Note the position **P** of the thread where the metre rule balances and record the distance **X**_o from end B of the metre rule.

$$X_o = 49.9$$
 + 0.2cm

- ✓ 1d.p a must.
- √ Units a must. Missing units deny (1mk)

 ½ mk
- c) Place a mass M of 50g at the 10cm mark from end A and adjust the position of the thread until the metre rule balances again as shown.



d) Measure and record the distances X_1 and X_2 .

$$X_1 = 27.9 + 0.2$$

$$X_2 = 62.1 + 0.2$$

- (1/2 mk)
- e) Calculate the value of W, weight of the metre rule from the expression W = $\frac{50X1}{X2-X1}$. (2mks)
 - ✓ Correct substitution of student's answer. 1mk
 - ✓ Correct evaluation. Exact answer or 4 s.f 1mk
- f) Remove the mass M and replace it with the rubber bands of mass Q provided. Adjust the metre rule again until it balances as shown.

g) Measure and record the distance d1 and d2.

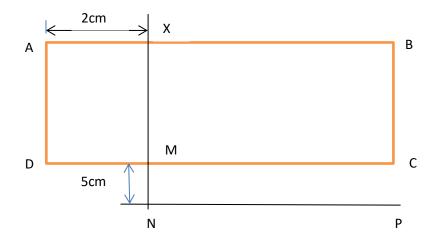
$$d_1 = 38.5 + 0.2$$

$$d_2 = 51.5 + 0.2$$

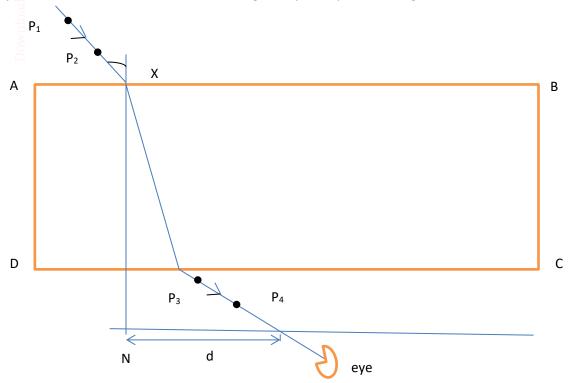
- (1/2 mk)
- h) Calculate the weight Q of the rubber bands using the expression Q = $\frac{w(d2-d1)}{d2}$. (2mks)
 - ✓ Correct substitution of student's answer. 1mk
 - ✓ Correct evaluation. Exact answer or 4 s.f 1mk

PART B

Proceed as follows:

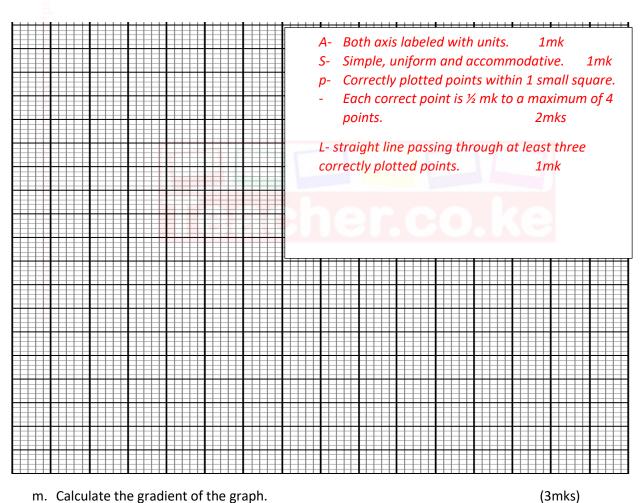

- a. Fix the plain paper on the sot board using the thumb tacks.
- b. Place the glass block on the paper fixed. The glass block should rest on the paper from the broader face.
- c. Trace the glass block using a pencil. Remove the glass block and label its edges as A, B, C and D as shown below.

В



- d. Mark point X on one of the longer sides of the traced glass block such that point X should be 2cm from edge. Construct a normal at X to emerge through the DC at point M.
- e. Mark point N along the emergent normal at 5cm from M.
- f. To Construct line NP to meet the normal at N at 90°. Line NP should be 10cm.

- g. Using a protractor, construct an incident ray RX at an angle of incidence, i = 10°. Fix two pins P₁ and P₂ along RX.
- h. Replace the glass block to the traced figure. View the path of incident ray RX through the glass block using the other pins P₃ and P₄.
- i. Remove the glass block and draw the emergent ray through P₃ and P₄.
- j. Measure the distance, d, of the emergent ray from point N along line NP as shown below.



NOTE: The plain paper should be submitted together with the question paper.

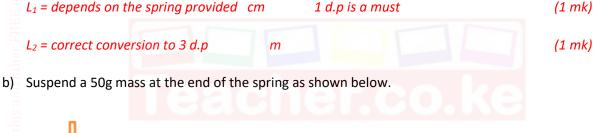
k. Record the corresponding values of d in the table below. Repeat the procedure for other values of i°. (5mks)

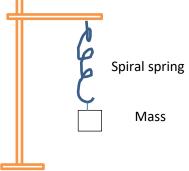
Angle of incidence, i°	10	20	30	40	50					
Distance, d (cm)	1.8	4.0	5.5	8.6	9.4	 ✓ ± 0.2 ✓ 1 d.p a must ✓ Each correct value is 1mk to a maximum of 3mks 				
Sin i° Sin 2i°	 ✓ Correct conversion of students answer. ✓ Exact answer or 4 s.f ✓ In each column, all correct values 1mk 									

Plot a graph of sin 2i (vertical axis) against d. (5mks)

- m. Calculate the gradient of the graph.
 - Change in y 1/2 mk
 - 1/2 mk Change in x
 - Correct substitution 1mk
 - Correct evaluation, exact answer or 4 s.f 1mk

QUESTION TWO


You are provided with the following:


- A retort stand, clamp and boss.
- A spiral spring.
- ❖ A stop watch.
- ❖ A 50g mass.
- ❖ A 100g mass.
- A metre rule.
- A voltmeter.
- An ammeter.
- ❖ A resistance wire labeled W mounted on a half metre rule.
- ❖ A resistance wire labeled Q mounted on a half metre rule.
- ❖ A micrometer screw gauge.
- Seven connecting wires.
- ❖ Two new dry cells.

PART ONE

Proceed as follow:

a) Determine the length, L, of the spiral part spring using the metre rule.

- c) Now give the mass a small vertical displacement and release so that it performs vertical oscillations. Time ten oscillations and determine the periodic time, T. Enter the results in the table below.
- d) Repeat the experiment for the other values of mass and complete the table. (4mks)

Mass, m, (g)	50	100	150	
Time for 10 oscillations, t, (s)	4.34	6.16	7.69	 ✓ ± 1.0 ✓ 2 d.p a must ✓ @ correct value is 1 mk to a maximum of 2mks
Periodic table, T, (s) T ² (s ²)	Correct conversion.			✓ @ correct value is ½ mk to a maximum of 1mk✓ All correct 1mk.

- e) Given that; $T = \pi \sqrt{(\frac{m}{k})}$ where k is the spring constant. Find the average value k for the spring. (3mks)
- ✓ Correct determination of k in each case. 1½ mk
- ✓ Principal of averaging of k ½ mk
- ✓ Correct evaluation 1mk

PART TWO

Proceed as follows:

a. Using the micrometer screw gauge provided, measure the diameter, d, of the wire labeled Q.

$$d = 0.37 + 0.02 \text{ mm}$$
 2 d.p is a must (1mk)

b. Determine the radius, r, of the wire.

$$r = correct \ division \ of \ student's \ d \ by \ two, \ mm$$
 at least 2 d.p (1mk)

c. Set up the apparatus as shown below.

i. Record the voltmeter, V, and ammeter, I, reading.

$$V = 1.6 \ V$$
 ± 0.2 \checkmark 1d.p a must. \checkmark Units a must. Missing units deny \checkmark $2 \ mk$ (1mk)

✓ 2d.p a must.

$$I = 0.08 A$$
 ± 0.02 \checkmark Units a must. Missing units deny $\%$ mk (1mk)

- ii. Determine the resistance, R_N of the wire N.
 - ✓ Correct substitution of V_N/I_N of student's answer. 1mk
 - ✓ Correct evaluation, exact answer or 4 s.f. 1mk
- d. Set up the apparatus as shown below.

(2mks)

e. Use the voltmeter provided to measure potential difference, V_N across wire N and V_Q across wire Q when the switch is closed.

$$V_N = 1.6 \pm 0.2 V$$
 1 d.p a must (1/2 mk)

$$V_Q = 0.6 \pm 0.2 \text{ V}$$
 1 d.p a must (1/2 mk)

- f. Use the value of R_N calculated in C. ii above and the value of V_N to calculate the current, I, flowing through wire N when switch was closed. (2mks)
 - ✓ Correct substitution of V_N/R_N of student's answer. 1mk
 - ✓ Correct evaluation, exact answer or 4 s.f. 1mk
- g. Determine the constant, L, given that; $L = \frac{RN}{VO}$. (2 mks)
 - ✓ Correct substitution of V_N/I_N of student's answer. 1mk
 - ✓ Correct evaluation, exact answer or 4 s.f. in A⁻¹ 1mk Missing units deny ½ mk Wrong units deny 1 mk

