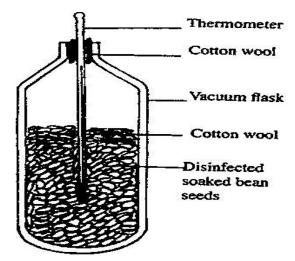


BUKAKA CLUSTER EXAMINATIONS BIOLOGY PAPER 2 MARKING SCHEME END OF TERM 1, 2025 FORM 4

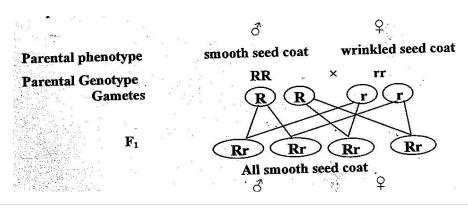
SECTION 1

1. The diagram below represents the lower jaw of a mammal

- a. Herbivorous
- rej herbivore
- b. Structural Tooth J is narrow/sharp/chisel like while tooth L is broad/ridged.

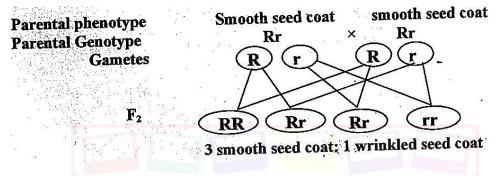

Functional —Tooth J is used for cutting and biting while tooth L is used for grinding and crushing food.

- c. i. Diastema
 - ii. To allow manipulation of food by tongue, separating chewed and newly cut vegetation.
- d. Calcium phosphate.


e.
$$i^{2}/_{2}$$
 $c^{1}/_{1}$ pm $^{2}/_{2}$ m $^{3}/_{3}$ **OR** $2(i^{2}/_{2}$ c $^{1}/_{1}$ pm $^{2}/_{2}$ m $^{3}/_{3}) = 32$

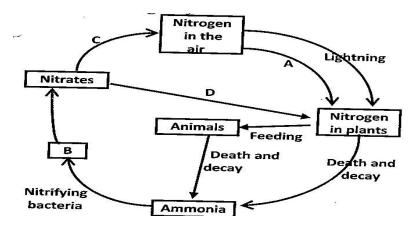
2. In an experiment, disinfected soaked bean seeds were put in a vacuum flask which was then fitted with a thermometer as shown in the diagram below.

- a. aerobic respiration. acc respiration
- b. i. An increase in temperature on the thermometer reading.
 - ii. Stored starch/carbohydrates in germinating seeds are broken down/hydrolysed then oxidized to release energy; Some of the energy is released as heat;
- c. To kill bacteria/fungi/micro-organisms that would cause decay/decomposition or respiration of the micro-organisms; which could raise heat.
- d. To conserve heat/prevent loss to surrounding.
- e. Use a similar set up with dead disinfected boiled seeds or use dry bean seeds.
- 3. In an investigation a variety of pea plants grown from seeds with smooth coats were crossed with plants grown from seeds with wrinkled coats. All the seeds obtained in the first filial (F_1) generation had smooth seed coats.
 - a. Using the letter R to represent the gene for smooth seed coat, wok out the genotype of the F_1 generation. Show your working.

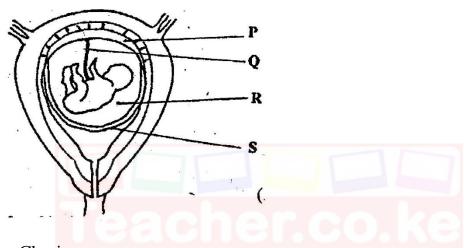


Parental genotype 1mk Gametes 1mk Fusion lines 1mk F1 genotypes 1mk

NB//Narration on the left is not a must but if written must be correctly placed


b. If the F_1 generation was selfed, determine the phenotypic ratio of the filial (F_2) generation. Show your working

Parental genotype 1mk
Gametes 1mk
F2 genotypes 1mk
F2 phenotypical ratio 1mk


NB//rej ratio if its narration is omitted i.e. if 3:1

4. The diagram below represents the nitrogen cycle

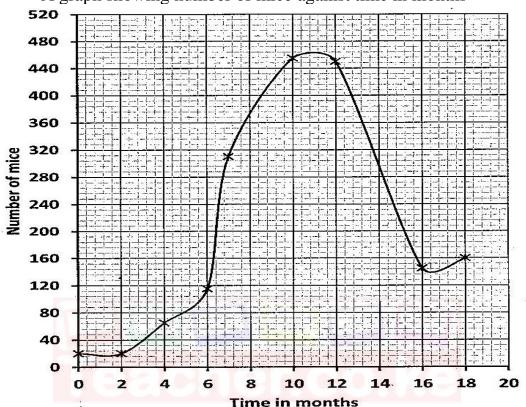
- a. A- Nitrogen fixation by symbiotic bacteria e.g. Rhizobium, D- absorption.
- b. Nitrites (NO)

- c. Denitrifying bacteria/Denitrificans.
- d. i. Leguminous plants (or legumes)
 - ii. Root nodules
- e. By -Killing/reduction of nitrogen fixing bacteria/nitrogen fixing microorganisms e.g. Rhizobium.
 - -Destruction of leguminous plants.
- 5. The diagram below represents human foetus in a uterus

- a. Chorion
- b. i. Umbilical arteries, Umbilical veins.
 - ii. umbilical vein-More food nutrients; more oxygen; umbilical artery-less food nutrients; more excretory products.
- c. Highly vascularized; large surface area;
 - -Presence of secretory cells;
 - d. Cushion foetus / acts as a shock absorber of the foetus.

SECTION B


6. A scientist carried out an investigation to find out the population growth of mice under laboratory conditions. Twenty young mice were placed in a cage. The results obtained from the investigation were as shown in the table below.


Time in months	0	2	4	6	7	10	12	16	18
Number of mice	20	20	65	115	310	455	450	145	160

a. On the grid provided, draw a graph of the number of mice against time.

Scale: x-axis: 1cm rep 2 months, y-axis: 1cm rep 40 mice

x axis scale 1mk y axis scale 1mk labelling axis 1mk each plotting 1mk curve 1mk

rej if origin is missing

b. i. population of mice is constant due to:-

- the reproducing mice are still immature.
- mice are still adjusting to their environment.

ii. Population of mice rose steadily due to: -

- An increase in the number of reproducing females.
- Mice are already adapted to their new environment.

iii. Population of mice rose rapidly due to: -

- There are many reproducing females.
- Plenty of food to the mice / environmental factors not limiting.
- iv. Population of mice almost constant but declining slowly due to:

- Stiff competition for food hence food is not adequate.
- Stress due to limited space.
- Accumulation of wastes which can be toxic.

c. i. Between which two months was population change greatest?

Between the 6th and 7th months

ii. Calculate the rate of population change over the period in (c) (i) above

rate of population change = change in mice population; time

$$\frac{310-115}{2}$$
 =; $\frac{195}{2}$ = 97.5 = 98 mice/month.;

=What change in population would be expected if the investigation was continued to the 19th month?

the population of mice would increase by 20 to stand at 180.

- d. To obtain the observed results state two variables that were kept constant during the investigation.
 - Amount of food given to the mice each day was kept constant.
 - Space was kept constant.
 - Sex ratio was kept constant.

7. a. State four characteristics of gaseous exchange surfaces

- moist; to dissolve gases hence diffuse in solution form.
- Thin walled/epithelium; which is one cell thick to reduce the distance of diffusing molecules.
- Have large surface area; for maximum exchange of gases.
- Highly vascularized; to maintain a step concentration gradient hence maximum gaseous exchange.

b. Describe the mechanism of gaseous exchange in a mammal Breathing in or inhalation

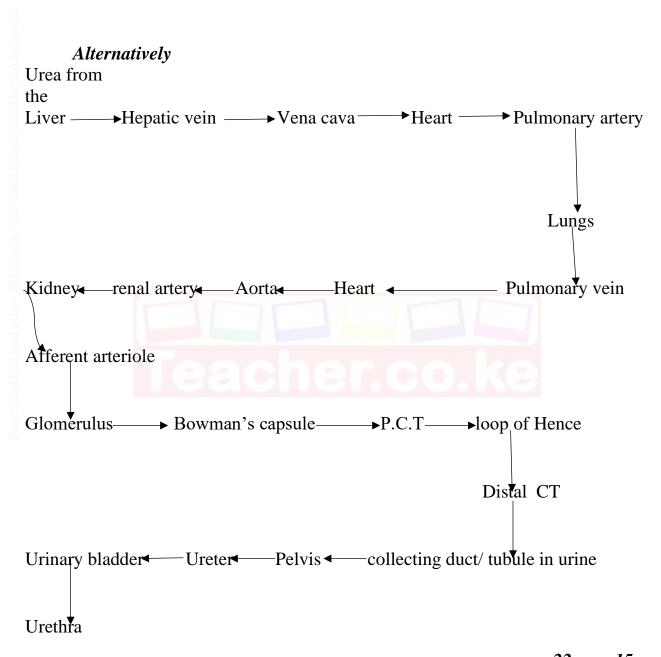
External intercostals muscles contract; while internal intercostals muscles relax; ribcage moves upwards and outwards; Muscles of diaphragm contract; hence flattens; the volume of the thoracic cavity increases; and pressure decrease than the atmospheric pressure; The higher atmospheric

pressure forces air rich in oxygen; into the nostrils, trachea, bronchi, bronchioles, alveoli; inflating the lungs;

Breathing out or exhalation

External intercostals muscles relax; while internal intercostals muscles contract; This causes the ribcage to move downwards and inwards; The muscles of the diaphragm assumes a dome shape; This makes the volume of thoracic cavity to decrease; while the pressure increases than atmospheric pressure; Higher pressure in the thoracic cavity forces air rich in carbon (IV) oxide; out of the lungs via bronchioles, bronchi, up the trachea and out through nostrils; and the lungs deflate;

8a. Describe how urea is formed in humans


Urea is formed in the liver; where excess amino acids are deaminated /amino group is removed; the amino group react with hydrogen; to form ammonia; which is toxic; ammonia combines with CO₂ (in the cycle); to form urea (which is less toxic);

Max 5

b. Describe the path followed by urea from the site of formation until it is eliminated from the body.

Urea is carried in blood; thorough the hepatic vein; into venacava; blood containing urea then enters the heart/right auricle/right auricle and right ventricle; leaves the heart through pulmonary artery into the lungs; (out of lungs through pulmonary vein; to the heart/left auricle/left auricles and left ventricle; through aorta (into) kidney; via renal artery; to afferent arteriole; to the glomerulus; where ultrafiltration occurs; resulting in formation of (glomerular) filtrate; which enters the Bowman's capsule; into the proximal convoluted tubule; loop of Henle /descending and ascending loops of Henle; to Distal convoluted tubule; urea enters the collecting ducts/tubules in urine; into the pelvis; ureter; then into urinary bladder; from where it exits the body through the urethra;

22 max 15