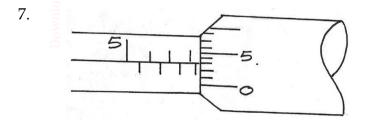


END OF YEAR 2025 EXAM (OCTOBER) TIME: 2 HOURS FORM 3 PHYSICS PAPER 1 MARKING SCHEME

- 1. Light lid builds high pressure in sufuria. The high pressure raises the boiling point of water exposing the potatoes to higher temperature
- 2. $E = \frac{1}{2} \text{ Fe}$ $\sqrt{1}$ = $\frac{1}{2} \times 20.015 \sqrt{1}$ = $0.015 \sqrt{1}$
- 3. Area of base
 - Position of centre of gravity $\sqrt{1}$
- 4. The thermometer bulb first receives the heat and expands creating more volume, the mercury then receives the heat and expands causing a rise.
- 5. $P_1P_1 = P_2 P_2$ $P_1 = A + H\ell wg = 100,000 NM^{-2}$

Volume is directly proportional to \mathbb{R}^3


$$R_1 r^3 = P_2 R^3$$

$$R^3 = \underline{P_1 r^3} = \underline{105000 \times (1 \times 10^{-3})^3 \sqrt{1}}$$

$$P^2 \qquad 100 000$$

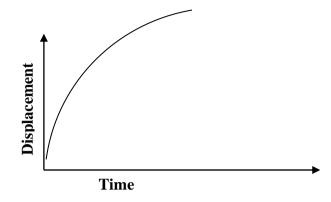
R³= 1.05 x 10⁻⁹ m
R=
$$\sqrt{1.05 \times 10^{-9}} = 1.0164 \times 10^{-3} \text{m}$$

D = 2.0328 X 10⁻³m 0r 2.0328 mm $\sqrt{1}$

6. Increases in friction lower the efficiency of a machine $\sqrt{1}$

8.
$$A_{1}V_{1} = A_{2}V_{2}\sqrt{1}$$

$$A_{2} = \underbrace{A_{1}V_{1}}{V_{2}}$$


$$= \underbrace{24 \times 3}_{9}\sqrt{1}$$

$$= 8cm^{2}\sqrt{1}$$

9. Stability increases $\sqrt{1}$ since centre of gravity is lowered (ice melts to a smaller volume of water) $\sqrt{1}$

10.

- 11. (a) The water melts at the top but the ice remains unmelted because water is a poor conductor of heat hence heat is not conducted downwards.
 - (b) The ice melts; heat is transmitted to it by convection

12.

(a)

- (i) $133-(70+50)\sqrt{1}$ = $133-120\sqrt{1}$
 - $=13g\sqrt{1}$
 - (ii) $M_w C_w D_{\Theta} + M_c C_c D_{\Theta} \sqrt{1}$ = $\underline{70} \times 4200 \times 25 + \underline{50} \times 900 \times 25 \sqrt{1}$ 1000 1000= 7350 + 4875= $12225 \sqrt{1}$
- (b) (i) Heat given =ML $_{\rm v}$ + MCD $_{\rm e}\sqrt{1}$ = 13 x 10-3 L $_{\rm v}$ + 13 x 10-3 x 4200 x (100-30) $\sqrt{1}$
 - (ii) Heat gained by water = Heat given out by steam + calorimeter $12225 = 13 \times 10^{-3} \text{Lv} + 13 \times 10^{-3} \times 4200 \times 70 \sqrt{1}$ $12225 = 13 \times 10^{-3} \text{Lv} + 3822$ $13 \times 10^{-3} \text{Lv} = 8403 \sqrt{1}$ $\text{Lv} = 646384.6 \text{ kg}^{-1} \sqrt{1}$

13.

(a) (i) $\frac{16.5}{r} = \frac{44}{4}\sqrt{1}$ $r = \frac{16.5 \times 16}{44}$ $R = 6 \text{cm} \sqrt{1}$

(b) V.R = R/r
$$\sqrt{1}$$

= $\frac{16.5}{6}\sqrt{1}$
= $2.75\sqrt{1}$

(c) (i) M.A - L/E
$$\sqrt{1}$$

= $\frac{1200\sqrt{1}}{300}$
= $4\sqrt{1}$

(ii)
$$n = \underline{M.A} \times 100\% \sqrt{1}$$

V.R
 $= 4/6 \times 100\%$
 $= 66.67\% \sqrt{1}$

- 14. (a) (i) The pressure of a fixed mass of a gas is inversely proportional to it's volume provided the temperature is kept constant $\sqrt{1}$
 - (ii) The volume of a fixed mass of a gas is directly proportional to it's absolute temperature at constant pressure $\sqrt{1}$
 - (b) (i) Check the student graph
 - (ii) at 0° C v= $4.7 \pm 0.1\sqrt{1}$
- 15. (a) $V = u \pm at\sqrt{1}$ $V^2 = u^2 \pm 2as\sqrt{1}$ $S = ut \pm \frac{1}{2}at^2$
 - (b) $100 \text{km/h} = \frac{100 \times 1000}{3600}$ = 27.78m/s $\sqrt{1}$

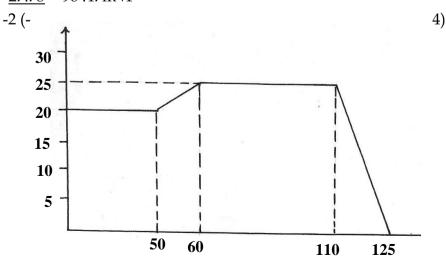
In 0.5 sec. the drive covers 27.78m/s x 0.55 = 13.89m

After applying brake

$$a = -4m/s^2$$

$$u = 27.78 \text{ m/s}$$

$$v=0$$


$$v^2 = u^2 + 2as \sqrt{1}$$

$$-2as = u^2$$

$$S = \underline{u^2}$$

$$= 27.78 = 96.47 \text{ m}\sqrt{1}$$

3

Distance = Area under graph
=
$$(20x 50) + \frac{1}{2} (20 + 25) 10 + (50x25) + \frac{1}{2} (15x25)$$

= $1000 + 225 + 1250 + 187.5$
= $2662.5 \text{ m}\sqrt{1}$

Total time = 125
Speed =
$$\frac{2662.5}{1}$$

125
= 21.3m/s $\sqrt{1}$

(iii)
$$a = \underline{v-u} \sqrt{1}$$

$$= \frac{25 - 20}{10}$$
$$= 0.5 \text{m/s} \sqrt{1}$$

16. (a) For a system of colliding bodies the total linear movement remains. Constant provided no external forces act $.\sqrt{1}$

(b)
$$m_1 u_1 + m_2 v_2 = m_1 v_1 + m_2 v_2 \sqrt{1}$$

 $10000x 10 + 2000 x (-20) = (10000 + 2000) v_1 \sqrt{1}$
 $100000 - 40000 = 12000 v_1$
 $V_1 = \underline{60,000} \sqrt{1}$
 12000
 $= 5m/s^{-1}\sqrt{1}$

(ii) ft =change in movement
$$\sqrt{1}$$

Ft = mv -mu
F = mv -mu
T
= $(2000 \times 5) - (2000 \times -20)\sqrt{1}$
2
= $25000N\sqrt{1}$