CHEMISTRY

FORM 3 PAPER 2

END OF YEAR 2025 EXAM (OCTOBER)

MARKING SCHEME

- 1 a) Ostwald process
- b) X ammonia
- c) Haber process
- d) i) $2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$
 - ii) $4NO_{2(g)} + O_{2(g)} + 2H_2O_{(l)} \rightarrow 4HNO_{3(aq)}$
- e) Platinum rhodium
- f) In presence of light HNO₃ undergoes decomposition
- g) Making of explosives

Manufacture of fertilizers

Manufacture of dyes and drugs

Purification of metals

2. (a)
$$H$$
 $|$ $C = C - C - H$ $|$ H $|$ H $|$ H

b) Reagent: Hydrogen gas. ✓¹

Conditions – Nickel catalyst /platinum

- -temperature of $180^{\circ}\text{C}-200^{\circ}\text{C}\checkmark^{1}$
- c) (i)1, 2 Bromopropan -1-ol $\sqrt{\frac{1}{2}}$
- (ii) K = Carbon (IV) oxide √½
 - (iii) L = 1,2- dichloropropane $\sqrt{\frac{1}{2}}$
- iv) M = Polypropene. ✓ ½
- (d) Conditions ;- U-V light /sunlight; excess chlorine. ✓¹
- (ii) Addition reaction √1
- (f) (i) M- polypropene ✓¹
 - (ii) Making buckets ✓¹
 - Making plastic chairs and tables.
 - (iii)- They lead to environmental pollution. ✓¹
 - They are non- biodegradable since bacteria cannot degrade it, it persists in the environment.
- 3. a)i) –Sodium chloride and concentrated Sulphuric (IV) acid. ✓¹
 - ii)- Concentrated sulphuric acid, Anhydrous Calcium chloride. ✓¹
 - iii) $NaCl_{(S)} + H_2SO_{4(l)}$ \longrightarrow $Na H SO_{4(aq)} + HCl_{(aq)} \checkmark 1$
- iv) Introduce a glass rod dipped in ammonia solution into a gas jar containing Hydrogen chloride gas.

Formation of dense white fumes confirms presence of Hydrogen Chloride gas.

- $b)\;(i)2HCl_{\;(g)}+Fe_{\;(s)} \qquad \qquad FeCl_{2(s)}\;+H_{2(g)}\checkmark^{1}$
 - $(ii)2H_{2(g)} + O_{2(g)}$ 2H₂O_(g) \checkmark 1
 - (iii)From the above equation (i)

1.96g ----- produce
1.96 x
$$24000 = 840 \text{cm}^3 \checkmark 1$$

56

c)i)From electrolysis of brine ✓¹

- ii)Hydrogen ✓¹
- -From electrolysis of brine ✓¹-from cracking of alkanes✓¹
- 4. a) white precipitate is formed

(1mk)

CO₂ reacts with Ca(OH)_{2(aq)} to form insoluble CaCO_{3(s)} (1mk)

b) The white ppt dissolves to form a colourless solution (1mk)

CaCO_{3(s)} is converted to Ca(HCO₃)_{2(aq)}which is soluble

$$CaCO_{3(s)} + CO_{2(g)} + H_2O_{(l)} \longrightarrow Ca (HCO_3)_{2(aq)} (1mk)$$

c) Hissing sound.

Effevervesence/Bubbles of colourless gas are seen. (3mks) Sodium darts on Surface.

- d) To suck gas produced.(1mk)
- e) In graphite 3 out of 4 electrons are used in bonding. One electron is delocalized hence it conducts electricity .(1mk)

In diamond all the 4 electrons are used in bonding hence no delocalized electrons.(1mk)

- f) Fire extinguishers.
 - Refrigerant.

(2mks)

- Fizzy drinks.
- 5. a) Used a beaker in strong heating.(1mk)

b) Bulb lights. (1mk)

c) Ions.(1mk)

d) Cathode
$$2I_{(1)} \rightarrow I_{2(g)} + 2e^{-(1mk)}$$

Anode Pb
$$^{2+}(1) + 2 = - Pb(s)(1mk)$$

- e) From the positive terminal to the negative terminal of the battery(arrow on the wire).
- f) -Extraction of reactive metals or extraction of metals e.g. Na, Al, Mg.
 - -Electroplating.
 - -Purifying metals.

-Manufacture of NaOH and chlorine. (any two 2mks

- 6. i) A and E or D and C
 - ii) A b and c
 - iii) Halogens
- b) Atomic radius of B is smaller than that of A. because B has more protons hence stronger nuclear forces of attraction
- c) Making of electric cables

Making of cooking pots

- d) A is more reactive than E. because A has a larger atomic radius hence weaker forces of attraction
- e) AD₂
- f) Ionic bond it involves complete transfer of valence electrons from metal to non metals
- 7. (a) (i) Thistle should be dipped inside acids otherwise gas would escape in air (1/2 mk)
- (ii) Hydrogen should be collected by upward delivery because is less denser than air. (1/2 mk)
- (iii) Delivery tube should not be touching the solid, no gas would be collected.
- (b) Conc Sulphuric (vi) acid or H₂SO₄₍₁₎ (1mk)
- (c) Zinc granules or Magnesium (1 mk)
- (d) CuSO_{4(s)} or Copper(ii)Sulphate crystals. (1 mk)
- (e) (i) Reducing agent (1 mk)
- (ii) $H_{2(g)} + Pb_{(s)}$ $Pb_{(s)} + H_2O_{(l)} (1 \text{ mk})$
- (iii) Copper(ii)oxide or CuO_(s) (1 mk)