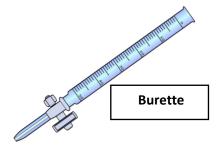
GRADE 8



INTEGRATED SCIENCE MARKING SCHEME

1. (2 mks)

Beaker

- 1. i) Sublimation ✓ 1
 - ii) Separating funnel ✓ 1
 - iii) Solvent extraction. ✓ 1
 - iv) Simple distillation method. ✓ 1
- 2. a) Have different solubilities ✓ 1
 - b) B ✓ 1
 - c) Solvent front ✓ 1

 baseline ✓ 1
- 3. a) Impure √½; does not have sharp/constant √½ m.p. and b.p.
 - b) AB Solid ✓1
 - CD Liquid ✓1
- i) Their molecules/particles are very compact together no spaces for expansion or compression. ✓1
 - ii) Molecules / particles ✓ ½ very wide apart have large ✓ ½ spaces for compression.
- 5. Type Chemical ✓1

Explanation – Combines with oxygen ✓ 1 to form new substance Magnesium Oxide//

- Large amount of energy evolved ✓1
- 6. i) Y

••	T T	_	11
ii)	V	(a)	√ 1

- 7. i) Pb @ ✓1
 - ii) Fe NB: Penalize joining; F or small p
 - iii) S
- 8. Mixture ✓ 1; its constituents ✓ 1 can be separated by physical means.
- 9.

Zinc Oxide / ZnO @ ✓1

water / H₂0

magnesium oxide

sodium carbonate

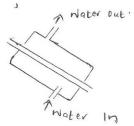
- 10. a) i) Smallest indivisible particle of an element that that do not exist on its own but can take part in a chemical reaction. ✓1
 - ii) Smallest particle of an element, that can exist on its own and can take part in a chemical reaction. ✓1
 - b) i) Sodium, Sulphur and Oxygen // Na, S, O @ √½
 - ii) Potassium, Hydrogen, Carbon and Oxygen // K, H, C, O @ √1/2
- 11. a) i) X Chimney

Y - Base

@ **√**1

Z – Collar

- ii) Luminous flame ✓1
- iii) Thin outer blue $\sqrt{\frac{1}{2}}$


Large luminous middle ✓ ½

Luminous	Non-luminous flame	
- Produces light / bright	- No light produced / dull	
- Large wavy	- Short steady	
- Quiet	- Roaring : NB: any 2 matches	
- Produces soot	- No soot produced	
- Less hot	- Fairly / very hot	

- Non-luminous b) i)
 - P blue region, Q – Pale green / blue region, R – Colourless region ii)
 - When air hole is fully open. iii)
- c) Very hot / fairly hot
 - Steady
 - Roaring

- Dull
- d) Spirit lamp, charcoal jiko, candle, kerosene stove, portable burner.

- 12. a) Fractional distillation \checkmark 1
 - b)

// NB: Water in lower than water out.

- c) L Liebig condenser / Condenser \checkmark 1
 - M Fractionating column ✓ 1
- d) Have different ✓ ½ boiling points which are close ✓ ½ to each other
- e) Condense the vapour ✓ 1 back to liquids
- f) No heating of the mixture ✓ 1

g) In oil refinery ✓ 1

Separation of components of air (from ✓ 1 liquid air)

- 13. a) Hydrated Iron(III) Oxide ✓ 1
 - b) i) Tube I Little rusting noted; Tube II \checkmark 1 no rusting noted
 - Little air dissolved in cold water make ✓ 1 a bit of rusting to occur in Tube I
 In tube III, anhydrous Calcium Chloride ✓ 1 absorbs all water and no rusting occurs
 - iii) Oiling, greasing, painting, galvanizing, sacrificial / protection, alloying.

iv) Acidic conditionsPresence of salt ions 2 @ ✓1

Higher temperatures

- 14. K) Gal bladder
 - L) Duodenum
 - M) Pancrease

(3mks)

- **15.** a) Movement of molecule/ions/atoms (acc substances) from a region of <u>high</u> concentration to a region of <u>low</u> concentration; (2mks)
 - b) Diffusion gradient (2mk)

The higher the diffusion gradient the faster the higher the rate of diffusion; (Acc the converse