

MARKING SCHEME

CHEMISTRY PRACTICAL

	I	II	III
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of solution T used (cm ³)			

Compl In Con	omplete table ete table with 3 titrations done – 1 applete table with 2 titrations done – blete table with 1 titration done – 0	nk - 1mk		(1mk)
Inverte Wrong	ze ½ mk once for ed table anthmetic istic titre values (below 1 or above	e 50 unless explain	ed)	
Accept	e of decimals	vise penalize fully		1mk
	uracy	the S.V d 1mk		1mk
1f 3 co	nciples of averagingnsistent titrations done and averagrations done but only 2 are consistent	ed	1mk	1mk
If 3 titu If 3 inc	two titrations done, are consistent rations done and are consistent but consistent titres averaged consistent titres averaged	only 2 are averaged (0)	mk) d (0mk) mk) nk)	
	nal answer accuracy			1mk
	are the candidates correct average t	itre with S.V		
>	If within +- 0.1 of S.V		(1mk)	
>	If within +- 0.2 of S.V		(½ mk)	
\triangleright	If beyond +- 0.2 of S.V	(0)	mk)	

a) Calculate the:

i. Average volume of solution T used

(1 mark)

Captured in principal of averaging

ii. The number of moles of solution Z used in titration

(1 mark)

$$\frac{25.0 \times 0.4}{1000} = 0.01 \, moles$$

iii. Concentration of solution T in moles per liter.

(2 marks)

iv. Calculate the mass of sodium carbonate that reacted with solution Y. (Na= 23, C= 12, O= 16) (3marks)

12, O= 16) (3marks)

Na₂CO₃(s) + 2HCl_(aq) -> Nacl_(aq) + CO₂(s) + H₂O₍₁₎ Number of moles of HCl in average titre -> O.Olmoles 250cm³

Original number of males of HCI = $\frac{Z\times80}{1000} = 0.16$ moles

Males of HCI that reacted with Carbanate = 0.16 - number of male
in 250 cm³

Moles of sodium Corbonate = 12x the difference in moles about

RFM of Na₂CO₃ =
$$(23\times2)+12+(6\times3)=106$$

1069 \longrightarrow Imple

No. of moles of sodium Carbonate

Mass of Sodium Carbonate = Number of males of Maz CO3 X 106

Work out the percentage purity of solid X.

(1 mark)

$$\frac{mass\ of\ sodium\ carbonate\ that\ reacted\ with\ solution\ Y}{\tau}$$
 x 100

b) Write the ionic equation between solid X and solution Y.

(1 mark

$$2 H_{(69)}^{+} + CO_{3(69)}^{2-} \longrightarrow CO_{2(5)} + H_{2}O_{(4)}$$

- 3. You are provided with solid L. Carry out the test below and record your observations and inferences in the spaces provided.
- a) Describe solid.

(2 marks)

b) Place half spatula of L in a non-luminous flame of a Bunsen burner.

Observations	Inference
Solid melts and burns with a yellow sooty flame	
Tess en	(¹ / ₂ mark
(¹ / ₂ mark)	

- c) Dissolve the remaining solid L in the distilled water and divide the solution into four portions.
 - i. To the fourth portion, add few drops of acidified potassium chromate (vi) and warm.

Observations	Inference
Orange acidified potassium	
chromate VI does not change to	R-OH absent
green	
Reject persist or remains or no	
color change, no observable	
change	$(^{1}/_{2} \text{ mark})$
$(^{1}/_{2} \text{ mark})$	

ii. To the second portion, add few drops of bromine water and warm.

Observations	Inference
Yellow bromine water changes to colorless / decolorized	== c ,-C = c-
(¹ / ₂ mark)	(¹ / ₂ mark)

iii. To the third portion add few drops of acidified potassium manganite (vii) and warm.

Observations	Inference	
Purple acidified potassium manganate VII changes to		
colourless		
(¹ / ₂ mark)	(1/2	2 mark)

iv. To the fourth portion add a quarter spatula end-full of sodium hydrogen carbonate.

Observations	Inference
Effervescence / bubbles	R-COOH
produced	
$(^{1}/_{2} \text{ mark})$	(¹ / ₂ mark)