

233/3

CHEMISTRY PAPER 3 MS

(PRACTICAL)

2 ¹/₄ HOURS

FOR EXAMINER'S USE

Question	Maximum score	Candidate's Score
1	13	
2	11	
3	16	
TOTAL SCORE	40	

Question 1.

Table 1.....5mks distributed as follows

i. Complete table with 18 correct entries......2mks

incomplete table with 15-18 correct entries....1 ¹/₂ mk

incomplete table with 12-14 entries...... 1mk

penalize $\frac{1}{2}$ mk for initial temperature above 40 or below 10

ii. Use of decimals1mk (either whole number consistently used or 1 d.p of .0 or .5 consistently used or 2d.p of .00 or .25 or .50 or .75)

iii. Accuracy1mk (tied to initial teacher temperature)

If within $\pm o.1$ of teacher value... 1mk

If outside ± 0.1 but within ± 0.2 ... $\frac{1}{2}$ mk

iii) Trend......1mk(a rise followed by a drop or a rise, constant then a drop)

b) GRAPH......3mks distributed as follows

i) Labeling.....1/2 mk (where both axes are labelled, axes not inverted and correct units or no units are given)

ii) Scale.. $\frac{1}{2}$ mk (use of at least 6 boxes in vertical axes and 9 boxes in horizontal axes or half no of boxes in each axes). mark for scale even when axes are inverted.

iii) Plots.... 1mk

6 correct plots....1mk

4-5 correct plots ¹/₂ mk

iv. Shape.....1mk

Two straight lines extrapolated each line passing through two correct plots

(b)From the graph determine the volume of solution Z which gave the maximum change in temperature (1mark)

-Reading from graph 1mk

(c)Determine the volume of solution R that reacted with the volume of solution Z.(1mark)

30-answer in b ½ mk	
=correct ans ½ mk	
(d)Calculate;	
(i)The ratio between volu	ume of solution Z and R that neutralized one another. (1mark)

```
\frac{answ in b}{smaller ans}: \frac{answer in c}{smaller ans} \quad \frac{1}{2} \text{ mk}
=correct ratio \frac{1}{2} \text{ mk} (-1/2 mk if answer is not 1:1)
```

(ii)The concentration in moles per litre of the acid in solution Z. (Assume that the volume ratio is the same as the mole ratio) (2marks)

moles of $R = \frac{2X ans in C}{1000} \frac{1}{2} mk$ = answer $\frac{1}{2} mk$

 $\frac{answer X1000}{Answer in b}$ $\frac{1}{2}$ mk = answer $\frac{1}{2}$ mk

QUESTION 2

Table 2..... 5mks

decimals.....1mk(all whole numbers or any number of consistent decimal points)

accuracy...1mk (compare the first candidate value with the teacher value and if within $\pm 2 sec$ award 1mk)

trend....1mk (continuous rise in time)

GRAPH....3mks

i) Labeling.....1/2 mk (where both axes are labelled, axes not inverted and correct units or no units are given)

ii) Scale.. $\frac{1}{2}$ mk (use of at least 6 boxes in vertical axes and 9 boxes in horizontal axes or half no of boxes in each axes). mark for scale even when axes are inverted.

```
iii) Plots.... 1mk
```


iv. Shape.....1mk

a curve via at least 3 correct plots and not extrapolated beyond last plots

(b) From the graph determine the time taken for the ribbon to react completely if 3cm³ water was used. (1mks)

 $12-3 = 7 \text{ cm}^3$

read graph at volume of 7cm³ ½ mk

= correct answer ¹/₂ mk

c) Explain the shape of the graph (2mk)

-decrease in concentration of V(decrease in volume) results to increase in time taken. 1mk

Download this and other FREE revision materials from https://teacher.co.ke/notes

-as the concentration decreases, the rate of colliding particles decreases hence less successful collisions and more time taken for a reaction to take place. 1mk

QUESTION 3

3. You are provided with solids M, N and P. Carry out the following tests and write your observations and interferences in the spaces provided.

a) Place all of solid M in the boiling tube. Add about 10 cm^3 of distilled water and shake until all the solid dissolves to obtain Solution M.

i). To about 2 cm³ of Solution M in a test tube, add 2M sodium hydroxide solution drop wise until in excess.

OBSERVATION (1mk)	INFERENCES (2mk)
-white ppt ¹ / ₂ mk soluble in excess ¹ / ₂ mk	$-Zn^{2+}Al^{3+}, Pb^{2+}$
38: /	All the three 2mk
	Only two 1 ¹ / ₂ mk
a h	Penalize ¹ / ₂ mk for each contradictory ion to max of 2mk

ii). To about 2 cm³ of Solution M in a test tube, add 2M ammonium hydroxide solution drop wise until in excess.

OBSERVATIONS (1MK)	INFERENCES(1MK)
-White ppt ½ mk insoluble in excess ½ mk	Al ³⁺ ¹ / ₂ mk, Pb ²⁺ ¹ / ₂ mk present (to scorethe ions must have been correctly inferred in I above) -penalize ¹ / ₂ mk for each contradictory ion to a maximum of 1mk

iii) To about 2 cm³ of Solution M in the test tube, add 4 drops of 2M sulphuric (VI) acid.

OBSERVATION (1mk)	INFERENCES(1mk)
-white ppt ½ mk	-Pb2 ⁺ present ½ mk(penalize fully for any contradictory cation)
-no bubbles ½ mk	-SO ₃ ²⁻ ,CO ₃ ²⁻ absent ½ mk (penalize ½ mk for each contradictory anion to a maximum of ½ mk)

iv) To about 2 cm³ of solution M in a test tube, add 2 drops of potassium iodide solution.

OBSERVATION (1mk)	INFERENCES (1mk)
-yellow ppt	Pb ²⁺ confirmed (penalize fully for each contradictory ion)

b). Place solid P into boiling tube. Add about 10cm³ of distilled water and shake well to obtain solution P .Use this solution for the following tests.

i) Place about 2cm³ of solution P in a test tube and determine its pH.

METHOD (1 ¹ / ₂ mk) OBSERVATION (¹ / ₂ mk) INFERENCES (1mk)
--

-Add drops of universal	$pH=1 \text{ or } 2 \text{ or } 3 \frac{1}{2} \text{ mk}$	-strongly acidic 1mk	Teacher.co.ke
indicator/ dip universal			
indicator paper ¹ /2 mk			
-Match the colour with a pH			
chart ½ mk			
- Read the Ph ¹ / ₂ mk			
ii). To about 2cm ³ of solution P	made in (ii) above, add 3 drop	s of acidified potassium mangar	nate (vii) solution.

OBSERVATIONS (1mk)	INFERENCES (1mk)
-purple MMnO4 changes to colourless 1mk Or KMnO4 is decolourised	=C=C= or $-C \equiv C$ - $\frac{1}{2}$ mkor ROH present $\frac{1}{2}$ mk

iii). To the remaining solution P in the boiling tube, add the other half of solid N.

OBSERVATIONS (1mk)	OBSERVATIONS (1mk)
Effervescence /bubbles/fizzing 1mk	N contains CO ₃ ²⁻ ,or HCO ₃ ⁻ 1mk

