

Term 2 - 2024 AGRICULTURE (MARKING SCHEME PAPER 1)

FORM FOUR

	SECTION A (30MARKS)				
	Answer all the questions in this section in the space provided.				
https://teacher.c0.k	 Advantages of intensive farming. Increases production per unit area Farm supervision is easy Ideal for densely populated area/small land holdings Utilizes technology to increase production ¹/₂ x 4 = 2mks 	(2mks)			
other FREE materials from	 Benefits of agroforestry to a maize crop. Leguminous trees fix nitrogen into the soil Trees acts as wind breaks Trees stabilizes soil against soil erosion Leaf litter decompose forming humus/recycle nutrients Trees act as water catchment area/conserve water ¹/₂ x 4 = 2mks 	(2mks)			
3.00 and this and o	Plant part used for vegetative propagation of each of the following plants.(i)Sisal - Bulbils/suckers(ii)Pyrethrum - splits(iii)Sweet potatoes - vine /stem cutting (reject cutting alone)(iv)Sugar cane - setts	(½ mk) (½ mk) (½ mk) (½ mk) (½ mk)			
4.	 Cultural ways of controlling couch grass (i) Mulching (ii) Cover cropping (iii) Crop rotation (iv) Proper spacing (v) Clean seed bed (vi) Flooding (vii) Timely planting ¹/₂ x 4 = 2mks 	(2mks)			
5.	 Sources of underground water Springs Boreholes Wells ¹/₂ x 3 = 1 ¹/₂ mks 	1½mks)			
6.	Causes of blossom end of rot in tomatoes (1) • Irregular watering	1½mks)			

• Excessive use of nitrogen $\frac{1}{2} \ge 3 = 1 \frac{1}{2}$ mks	
 7. Qualities of a good green manuring plant Hardy Fast growth Ability to rot quickly Highly leafy Leguminous ¹/₂ x 3 = 1 ¹/₂ mks 	(1½mks)
 8. Reasons for practicing minimum tillage. Reduce cost of cultivation Control soil erosion Improve soil structure Conserve water ¹/₂ x 4 = 2mks 	(2mks)
 9. Records that should be kept by a poultry farms. Health records Feeding records Labour records Egg production records Marketing records Inventory records ½ x 4 = 2mks 	(2mks)
 10. Ways in which pastures are classified Pasture stand; pure/mixed stand Pasture establishment; Natural/artificial Ecological zone ¹/₂ x 3 = 1 ¹/₂ mks 	(1½mks)
 11. Ways in which land reforms can be implemented in Kenya. Land consolidation. Land adjudication and registration/issue of title deeds Improve land legislation Tenancy reforms Land settlement and resettlement ¹/₂ x 4 = 2mks 	(2mks)
 12. Factors that determine the stage at which a crop is harvested. Market price/market demand Weather conditions 	(2mks)

Purpose/intended use

Lack of calcium

•

• Taste and preference/form required

Teacher.co.ke

- Concentration of required chemical/colour/maturity $\frac{1}{2} \times 4 = 2mks$
- 13. Beneficial effects of weeds to a farmer.
 - Some are edible to man
 - Some have medicinal value e.g Datura strommonium/thorn apple
 - Control soil erosion
 - Some provide food to livestock
 - Releases humus after decomposition $\frac{1}{2} \times 4 = 2$ mks

14. Advantages of practicing crop rotation.

- Maximum use of nutrients
- Control buildup of pests and diseases
- Control weeds
- Improve soil fertility when <u>legumes</u> are included
- Control soil erosion when <u>cover crops</u> are included
- Improves soil structure if <u>grass lay</u> is included $\frac{1}{2} \ge 4 = 2$ mks (reject if underlined word is missing)

15. Name four methods of controlling pests.

- Biological methods accept specific example
- Chemical method
- Cultural method accept specific example
- Physical/mechanical method accept specific examples
- Legislation.
 - $\frac{1}{2} \ge 4 = 2 \text{mks}$

16. Distinguish between intensive hedgerow and border planting forms of agroforestry (2mk)

- Intensive hedgerow Trees or shrubs are planted in between rows of crops
- Border planting Trees or shrubs are planted on the border of the farm.

SECTION B (20 MARKS)

3

(2mks)

(2mks)

(2mks)

Answer all the questions in this section in the spaces provided.

- 17. The following illustrations show different production function curves in agricultural economics. Study them and answer the questions which follows;
 - (a) Identify the production function curves labeled A, B and C
 - A Increasing <u>returns</u> production (1mk)
 - B Constant returns production. (1mk)
 - C Decreasing returns production (1mk)

Reject if the word returns is missing.

- (b) What does the law derived from the production function labeled C state? (1mk)
- If successive units of one variable input are added to fixed quantities of other inputs, a point is reached when additional/extra/marginal product per additional unit of input declines.
- (c) Which one of the three production functions curves is rare in Agriculture (1mk)
 - (i) В
 - Other factors influencing/limiting agricultural production e.g. (ii)
 - Weather
 - Biotic factor
 - Disease attack
 - (Reject if the answer in C (i) above is wrong.

18. The table below shows the population and gross domestic products of countries A and B

Country	Gross Domestic product (million Ksh)	Population (million)
А	1800	36
В	1200	15

(a) Calculate the per capita income for each country show your working Calculation of per capital income

(2mks)

Per capita income = $\frac{\hat{G}ross \ Domestic \ product}{\hat{G}ross \ Domestic \ product}$ population

 $A = \frac{1800}{36} = 50$ $B = \frac{1200}{15} = 80$

 $1 \ge 2 = 2mks$

- (b) Which of the two countries is more developed economically (1mk)B (c) Give a reason for your answer in (b) above (1mk)
- B has a higher per capita income
- (d) How can agriculture increase the gross domestic product of a country (1mk)By creating employment/developing industries/increasing production.

19. The diagram below illustrate investigation on a property of soil using soil samples labeled J, K and L.

4

	Teacher.co.ke			
 (a) Name the property of soil being investigated ✓ Soil capillarity 1 x 1 = 1mk 	(1mk)			
 (b) What is the relationship between the soil property above and the size of soil ✓ The smaller the size of the particles the greater the force of capillarity. 1 x 1 = 1mk 	particles? (1mk)			
(c) Which soil sample would be suitable for growing paddy rice? \checkmark L 1 x 1 = 1mk	(1mk)			
 (d) Give a reason for your answer in (c) above Has the highest capillarity/has the highest water holding capacity. 1 x 1 = 1mk 	(1mk)			
20. The following is a list of nutrients: copper, calcium, nitrogen, molybodenum, zinc, phosphorus, carbon,				
sulphur, iron and magnesium. Which of the above nutrients are;				
(a) Macro – nutrients	(1mk)			
 Calcium, Nitrogen, Phosphorus, Carbon, Sulphur and Magnesium (Award 1 mark of all the five macro – nutrients are present. Penalize – nutrients is missing. 	fully if any of the macro			
(b) Micro – nutrient	(1mk)			
 ✓ Copper, molybodenum, Zinc and Iron (Award 1 mark of all the four micro – nutrient are there) 				
(c) Fertilizer elements (1mk	z)			
✓ Nitrogen and Phosphorus				
(Award 1 mark if the two are present) (d) Liming elements	(1mk)			
\checkmark Calcium, Magnesium and Sulphur.	(1111K)			
(Award 1 mark if the three are present				
(e) Primary macro nutrients	(1mk)			
✓ Nitrogen and Phosphorus				
(Award 1 mark if the two nutrients are presents				

SECTION C

Answer any two questions in this section in the spaces provided after question.

21.

(a) Functions of a live fence in a farm.

(5mks)

- \checkmark Act as windbreak
- ✓ Some are used as a fodder for the livestock e.g tickberry
- ✓ Some may provide edible fruits e.g Kei apple
- ✓ Have aesthetic value

- \checkmark Provide security
- \checkmark Mark the boundary when planted on a border lines $1 \ge 5 = 5 \text{ mks}$
- (b) Describe various risks and uncertainties in crop farming

(10 mks)

(5mks)

- \checkmark Technology uncertainty farmers may not be sure of the effective of new production technology
- \checkmark Price uncertainty This is due to fluctuation of commodity prices.
- \checkmark Personal injury or sickness This may affect the ability of the farmer to work
- \checkmark Government policy this may change with time making farmer to incur losses
- \checkmark Demand for a commodity uncertainty this results in a loss when market demand is low.
- ✓ Yield uncertainty A farmer cannot accurately project how much to expect
- ✓ Pest and disease outbreak this may lower the yield
- \checkmark Obsolescence the farmer may invest in a technology which will become obsolete.
- \checkmark Natural catastrophes this include floods, earthquakes, storms etc.
- ✓ Labour uncertainty
- ✓ Political instability
- ✓ Theft of crop
- ✓ Fire risk/ownership uncertainty $1 \ge 10 = 10 \text{ mks}$
- (c) Functions of young farmers clubs in Kenya
 - ✓ Involvement in workshops and seminars related to agriculture.
 - ✓ Participating in exhibitions and competitions at Ask shows.
 - ✓ Involvement in agricultural projects at club level.
 - ✓ Participating in young farmers club annual rallies
 - ✓ Participate in national ploughing contest.
 - ✓ Participate in exchange programme
 - ✓ Participate in national tree planting activities.

22.

- (a) Factors that should be considered in farm planning (10mks)
 - \checkmark Size of the farm this determines the number of enterprises possible.
 - ✓ Environmental factors/climate/soil type this will determine specific enterprises that are possible in an arta.
 - ✓ Transport and communication this ensures produce reach market and inputs are easily accessed.
 - \checkmark Government policy this ensures that laws are followed.
 - \checkmark Farmer objective and preferences a farmer will have a sense of ownership of the farm plan for motivation.
 - \checkmark Trend in labour market This ensures labour availability through the season
 - \checkmark Existing market conditions and price trends this ensures what is sold is at an appropriate price
 - \checkmark Possible production enterprises the farmer to choose the most profitable and convenient enterprise.

6

(5mks)

(5mks)

(5mks)

$2 \ge 5 = 10 \text{mks}$

- (b) Explain the different ways in which each of the following environmental factors influence crop production.
 - (i) Wind
 - ✓ Strong wind increases the rate of evaporation/evapotranspiration/wilting
 - \checkmark Help in pollination of crops
 - ✓ Strong winds have a cooling effect which influences rate of physiological processes
 - ✓ Strong winds may cause lodging/destruction of certain crops.
 - ✓ Wind can spread diseases/pests
 - ✓ Used in winnowing/cleaning grains
 - $1 \ge 5 = 5 \text{mks}$
 - (ii) Temperature
 - \checkmark It affects quality of certain crops eg. pineapple
 - ✓ Causes increase in incidences of pests/diseases.
 - ✓ Low temperature causes frost injury
 - ✓ Influences distribution of crops
 - ✓ High temperature increases rate of evapotranspiration hence wilting
 - \checkmark Influences the rate of physiological processes in crop.
 - $1 \ge 5 = 5 \text{mks}$

23.

- (a) Information contained in a purchase order.
 - \checkmark Quantities of the goods
 - ✓ Types of good required
 - ✓ Date of order
 - ✓ Date within which the ordered goods should be delivered
 - \checkmark Person who orders the goods
 - \checkmark Person who authorized the order
 - ✓ Cost of goods/each item
 - \checkmark Name of the supplier
 - ✓ Serial number
 - ✓ Total amount/cost involved

 $1 \ge 5 = 5 \text{mks}$

- (b) Harvesting of tea
 - ✓ Leaves are picked selectively for the highest quality
 - \checkmark Pluck top two leaves and a bud for fine plucking/three leaves and a bud for coarse plucking
 - \checkmark Use a plucking stick to maintain the plucking table
 - ✓ Pluck at 5-7 days interval in rainy season and 10-14 days in a dry period.

(7mks)

- ✓ Put the plucked tea in a woven basket to facilitate air circulation/prevent fermentation.
- \checkmark Do not compress the leaves in this basket to prevent heating up/browning.
- \checkmark Put plucked tea in cool and shaded place.
- ✓ Deliver the plucked tea to the factory same day. $1 \ge 7 = 7 \text{mks}$

(c) Cultural methods of controlling soil erosion

(8mks)

- ✓ Contour farming cultivation and planting done across the slope hence in holding water thereby increasing infiltration and reducing run off.
- \checkmark Mulching covers the soil thereby reducing splash erosion/reduce the speed of run off.
- ✓ Strip cropping alternating strips of crops that give good soil cover with those that give little soil cover controls movement of soil particles hence control soil erosion.
- ✓ Vegetated water ways this slows down run off/trap eroded soil particles thereby preventing soil erosion.
- ✓ Afforestation/re-afforestation trees protect soil from splash erosion by atomizing rain drop/encourage water infiltration/protect soil from wind which could detach and remove soil particles.
- ✓ Intercropping crops which do not cover soil and crops that have good ground cover should be planted together to prevent splash erosion/surface run off.
- ✓ Minimum tillage –this maintains good soil structure.
- ✓ Cover cropping this spread over the surface of soil hence protect soil from effects of raindrops.
- ✓ Crop rotation maintains soil cover for protection against soil erosion/improved soil structure.
- \checkmark Correct spacing this ensures adequate soil cover.
- ✓ Grass strips/filter strips they are left between cultivated/cropped strips of land to reduce speed of water and filter out trodden soil.
- \checkmark Agroforestry this intercepts raindrops/stabilizes soil acts as wind breaks.
- ✓ Rotational grazing this allows grass to recover thus prevent soil erosion. 1 x 8 = 8mks

