KAPSABET HIGH SCHOOL

_233/3 -

CHEMISTRY - Paper 3

21/4 HOURS

ADM NO.:	CLASS
TE:	
2022 FINAL	
	ADM NO.: TE:

Kenya Certificate of Secondary Education (K.C.S.E)

KENYA CERTIFICATE OF SECONDARY EDUCATION

Instructions to Candidates

- 1. Write your name, index number, and class and admission number in the spaces provided on this page above.
- 2. Sign and write the date of the practical in the spaces provided on this page above.
- 3. Answer ALL questions in the spaces provided in the question paper after each question.
- 4. You are advised to take 15minutes at the beginning to read-through the question-paper very carefully and make sure you have **ALL** the chemicals and apparatus that you may need.
- 5. *Mathematical tables and electronic calculators may be used.*
- 6. All working must be clearly shown where necessary.
- 7. This paper contains 7 printed pages.
- 8. Candidates should check the question paper to ascertain that **ALL** the pages are printed as indicated and that no questions are missing.

For Examiners Use Only:

Question	Maximum Score	Candidates Score
1	15.0	

1

2	11.0	
3	14.0	
TOTAL	40.0	

Q1. You are provided with:

- i) Magnesium ribbon, solid FA1.
- ii) 0.7 M hydrochloric acid, solution FA2.
- iii) 0.05 M sodium hydroxide solution, solution FA3.
- iv) Distilled water.
- v) Phenolphthalein indicator solution.

You are required to determine the:

- i) Number of moles of hydrochloric acid that remain unreacted.
- ii) Number of moles of magnesium that reacted.

PROCEDURE I

- a) Using a burette, measure 50.0cm³ of solution FA2 and place it in a 100ml plastic beaker.
- b) Put the magnesium ribbon, solid FA1 in the 50.0cm³ of solution FA2 in the 100ml beaker and allow the reaction to proceed until effervescence stops.

PROCEDURE II

- c) Transfer ALL the solution obtained in Procedure I into a 250ml volumetric flask.
- d) Top up the solution in the volumetric flask to calibration mark using distilled water. label this as solution FA4.
- e) Empty the burette and fill it with solution FA3.
- f) Pipette 25.0cm³ of solution FA4 and place it into an empty 250ml conical flask. Add 3 drops of the phenolphthalein indicator solution and titrate against solution FA3 from the burette. Record the results in Table 1.
- g) Repeat the titration of solution FA4 against FA3 two more times in order to complete Table 1. Table 1.

Titration	1 st	2 nd	3 rd
Titiation	1	2	3

Initial burette reading, cm ³ Volume of solution FA3 used, cm ³ Average volume of solution FA3 used = cm ³ Calculate the number of moles of: i) Sodium hydroxide in the average titre volume used.	(4mks) (1mk)
Average volume of solution FA3 used = cm ³ Calculate the number of moles of:	(1mk)
	(1mk)
i) Sodium hydroxide in the average titre volume used.	(1mk)
ii) Hydrochloric acid in 25.0 cm ³ of solution FA4. (2mks)
iii) Hydrochloric acid in 250.0 cm ³ of solution FA4. (2m	ks)
iv) Hydrochloric acid in 50.0 cm ³ of solution FA2. (1m	k)
v) Hydrochlorio ocid that receted with the recensives	Ira)
v) Hydrochloric acid that reacted with the magnesium. (2m	

vi)	(2mks)

2. You are provided with:

- i). 2.20g of solid **BA11**,
- ii). Thermometer.
- iii). Distilled water.
- iv). 100 ml Glass beaker
- v). Boiling tube.

You are required to determine the solubility of compound **BA11** at various temperatures.

Procedure I:

- a) Place the whole amount of solid **BA11** supplied to you into a clean, dry boiling tube.
- b) Using a burette, add 2.00cm³ of distilled water into the boiling tube with solid **BA11**.
- c) Insert a thermometer into the boiling tube and heat the mixture in the hot water-bath (use the 100ml beaker), while stirring continuously with the thermometer, until the temperature of the mixture is about 80°C when **ALL** the crystals **JUST** dissolve
- d) Remove the boiling tube from the hot water bath and allow the contents to cool slowly while stirring with the thermometer. Note the temperature at which the crystals FIRST form/reappear and record this crystallization temperature, T_c in Table 2
- e) Using the same mixture from (d) above, add 1.00cm³ of distilled water from the burette into the boiling tube containing the mixture and repeat steps (c) and (d) above. Continue in this way until a total volume of water added to the boiling tube is 7.00cm³. Complete Table 2 by calculating the solubility of compound **BA11** in water at the different temperatures.

Table 2: (4mks)

Total volume of water	Crystallization	Solubility of compound BA11 in water
added (cm ³)	Temperature $T_{C}(^{\circ}C)$	(g/100g of water)
2.00		
3.00		
4.00		
5.00		
6.00		

7.00			
f) On the grid provided plot a	a graph of solubility of comp	oound BA11 (vertical axis) (3mks)	against temperature.
g) Using the graph determine: I. the temperature at	: which 100.0g compound	BA11 would dissolve	e in 100g of water (1mk)
II. solubility of compound	BA11 at 30.0°C.		(1mk)
h) A solution containing 100 crystals formed.	g of BA11 per 100g of wa	ter was cooled to 30.0°C.	Determine the mass of (2mks)
		CHOOL 2023	

	_	out 10 cm ³ of distilled water and shake until a
solid dissolves. Label this as	Solution FA5.	
Γο about 2 cm ³ of Solution Facess.	A5 in a test tube, add	2M sodium hydroxide solution drop wise un
OBSERVATION		INFERENCES
	(1mk)	(1n
about 2 cm ³ of Solution FA5	in a test tube, add 2M	A ammonium hydroxide solution drop wise u
about 2 cm ³ of Solution FA5	in a test tube, add 2M	$\it M$ ammonium hydroxide solution drop wise un
	in a test tube, add 2N	A ammonium hydroxide solution drop wise un INFERENCES
	in a test tube, add 2N	
about 2 cm ³ of Solution FA5 OBSERVATION	in a test tube, add 2M	

6

KAPSABET BOYS HIGH SCHOOL 2023

iii) To about 2 cm³ of Solution FA5 in the test tube, add 4 drops of 2M sulphuric (VI) acid.

OBSERVATION	INFERENCES
(1mk)	(1mk)

iv) To about 2 cm³ of solution FA5 in a test tube, add 2 drops of potassium iodide solution.

OBSERVATION	INFERENCES
(1mk)	(1mk)

- b). Place solid FA7 into boiling tube. Add about 10cm³ of distilled water and shake well. Label this as solution FA7 .Use this solution for the following tests.
- i) Place about 2cm³ of solution FA7 in a test tube and place the universal indicator paper provided into the solution hence determine its pH.

INFERENCES	
(1mk)	(1mk)
	INFERENCES (1mk)

ii). To about 2cm³ of solution FA7 made in (ii) above, add 3 drops of acidified potassium manganate (vii) solution.

OBSERVATION	INFERENCES		
(1mk)	(1mk)		

iii). To the remaining solution FA7 in the boiling tube, add the other half of solid FA6.

OBSERVATION	INFERENCES
(1mk)	(1mk)

CONFIDENTIAL

QUSTION 1

- 1. Solid FA1, 3cm length of magnesium ribbon.
- 2. $60 \text{ cm}^3 \text{ of solution FA2} 0.7M \text{ HCl.}$
- 3. $80 \text{ cm}^3 \text{ of solution } FA3 0.05M \text{ NaOH}.$
- 4. 1 Burette.
- 5. One 25ml pipette.
- 6. One 100ml plastic beaker.
- 7. One wash bottle with distilled water.

QUESTION 2

- i) 2.20g of solid **BA11**, (Oxalic acid)
- ii) Thermometer.
- iii) Distilled water.
- iv) 100 ml Glass beaker
- v) Boiling tube.

QUESTION 3

- 1. 0.5g of solid FA5 Pb (NO₃)₂.
- 2. 0.1g of solid FA7 maleic acid.
- *3.* 0.5g of solid FA6- Na₂CO₃.
- 4. $Test\ tube rack + 6\ test\ tubes + 1\ boiling\ tube$.
- 5. One metallic spatula.
- 6. Universal indicator paper

Access to:

- a) Phenolphthalein indicator.
- b) 0.5 M KI.
- c) Acidified KMnO₄.
- *d)* Universal indicator solution +pH chart (full range).
- e) 2M H_2SO_4 .
- f) 2M NaOH.
- g) 2M NH₄OH
- h) Bunsen burner.

•

<u>REQUIREMENTS</u> QUSTION 1

- 8. Solid FA1, magnesium ribbon.
- 9. $60 \text{ cm}^3 \text{ of solution } FA2 0.7M \text{ } HCl.$

- 10. 80 cm³ of solution FA3 0.05M NaOH.
- 11. 1 Burette.
- 12. One 25ml pipette.
- 13. One 100ml plastic beaker.
- 14. One wash bottle with distilled water.

QUESTION 2

- 1. Thermometer.
- 2. 2.20g of oxalic acid solid BA11,
- 3. Distilled water.
- 4. 100 ml Glass beaker
- 5. Boiling tube.

QUESTION 3

- 7. 0.5g of solid FA5
- 8. 0.1g of solid FA7
- 9. 0.5g of solid FA6
- 10. Test tube rack + 6 test tubes +1 boiling tube.
- 11. One metallic spatula.
- 12. Universal indicator paper

Access to:

- i) Phenolphthalein indicator.
- j) 0.5 M KI.
- k) Acidified KMnO₄.
- *l)* Universal indicator solution +pH chart (full range).
- m) 2M H_2SO_4 .
- *n*) 2M NaOH.
- o) 2M NH₄OH
- p) Bunsen burner.