Name	SCHEME Index No. ADM
School	Date
233/3 CHEMISTRY PAPER 3 PRACTICAL	MOKASA MS

JUNE, 2021
Time: 2 1/4 Hours

MOKASA I EXAMINATION

Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided.
- Sign and write the date of examination in the spaces provided.
- Answer all the questions in the spaces provided in the question paper
- You are not allowed to start working with the apparatus for the first 15 minutes of the 2½
 hours allowed for this paper. This time is to enable you to read the question paper and
 make sure you have all the chemicals and apparatus required.
- All working must be clearly shown where necessary
- Mathematical tables and electronic calculators may be used.
- This paper has 7 printed pages. Check to confirm that it is so.

FOR EXAMINER'S USE ONLY

QUESTION	Max Score	Candidate Score
1	22	
2	10	
3	08	,
TOTAL	40	0 J/h
TOTAL	40	

1(a) You are provided with:

- Solution A ,containing 39.2g/l of FeSO₄(NH₄)₂SO_{4.n}H₂O
- Solution B Containing 3.0g/l of KMnO₄.
 You are required to determine;
- The concentration of solution A in moles per litre
- The number of moles of (n) of water of crystallization in FeSO₄(NH₄)₂SO₄.nH₂O

Procedure

- Fill the burette with solution A.
- Using a pipette filler, pipette 25.0cm³ of solution B into a conical flask and titrate with solution A until a pink colour just appears.
- Record the volume of solution A used in the table below. Repeat the experiment twice and fill the table.

Table 1

Titrations	1	2	- 3	
Final burette reading (cm ³)				
Initial burette reading (cm ³)				
Volume of solution A (cm ³)		4	3.	

(4mks

CT-1 PP-1 PA-1 FA-1

a) Calculate the average volume of solution A used

(1mk)

- b) Determine;
- i) Concentration of solution B in moles per litre,

(1mk)

(K=39,Mn=55,O=16)

0.017861

ii) Number of moles of solution B used.

(1mk)

25 X Ans (b) (i) / 1

c) Given that the ionic equation for the reaction is: $MnO_{4 \text{ (aq)}} + 8H^{+}_{\text{(aq)}} + 5Fe^{2+}_{\text{(aq)}} > Mn^{2+}_{\text{(aq)}} + 5Fe^{3+}_{\text{(aq)}} + 4H_{2}O_{\text{ (l)}}$

Determine the number of moles of solution A used.	(1rnk)
Ans. 6(1) x 5 / 2	
Correct Anscol 12	Į,
Determine the;	
i) Concentration of solution A in mole per litre	(lmk)
1000 x Ans. (C)	
Ans.(9) - Concert angets	
ii) Relative formula mass of FeSO ₄ (NH ₄) ₂ SO ₄ .nH ₂ O	(1mk)
RFM = 39.2/2	4
Ans. c(i)	
Ass (C2)	
iii) Number of moles of water of crystallization (n) in FeSO ₄ (NH ₄) ₂ SO _{4.nH₂O}	(1mk)
294 +181 = Ans(c2) 12	1
b. You are provided with 2.0g of solid R in a boiling tube.	V 2

You are required to determine the solubility of solid R at different temperatures.

Procedure

- (i) Using a burette, add 3.0cm³ of distilled water into the boiling tube with solid R.
- (ii) Gently heat the boiling tube, while stirring the contents carefully with a thermometer until the crystals of R dissolve completely.
- (iii)Remove the boiling tube from the flame and allow the contents to cool while stirring with the thermometer. Note the temperature at which crystals **just** appear and record it in Table II below.
- (iv) Add 2.0cm³ of distilled water from the burette into the boiling tube containing the mixture and repeat steps (ii) and (iii) above.
- (v) Repeat step (iv) three more times.
- (vi)Calculate the solubility of solid **R** in water at the different temperatures and complete table 2.

Table 2

CT-1 DD-1/2 T-1/2 AC-I 03

Total volume of water added (cm ³)	Temperature at which crystals just appear(°C)	Solubility of solid R in water (g/100g of water)	
3	(3)201	66.7.2	
5		40.0	
7	(3)	28.6 00	2 for solubility
9		22.2 V	
11	UNID TO SWED	18.2 ~	

(5½ marks)

a) On the grid provided, plot a graph of solubility of solid R (vertical axis) against temperature(horizontal axis) (3 marks)

	Solubility in	wense.	s with increase in
inference	es in the spaces provided.		pelow and record your observations and
(3	shake. Divide the resulting solu		Add about 10cm ³ of distilled water and
	Observations	- 1-	Inference
	Dissolves to from Colonless Solution	(1mk)	- Soluble saiting - Cu, Fe, Fet Fet (Imk)
(i)	To the 1 st portion, add drops of s	odium sulp	* C
	Observations	WOLL	Inference
	No write pp	+/	Pb; Ba; Ca 2-12 absent. (1mk) 1-0.
		(1mk)	absent. (1mk) -0.
(ii) To	the 2 nd portion, add sodium hydr	oxide solut	ion dropwise until excess. The Contradiction of th
	Observations White Ppt S Rexcess	etubie	Inference Ai, Zit La
8	is excess /	(1mk)	Persont. (Imk) or position present
	:	:	

b) From your graph, determine

of water.

(i) The temperature at which 35g of solid \mathbf{R} would dissolve in 100cm^3

(ii) The solubility of solid R at 50°C.

From graph.

(iii) State how solubility varies with temperature.

(1mk)

(1mk)

 $(\frac{1}{2}mk)$

(iii) To a 3rd portion, add ammonia solution dropwise until in excess.

Observations	Inference	2 1 10
White ppt	(lmk) Ait	for any other (1mk)

(iv) To the fourth portion, add 2-3 drops of acidified barium nitrate solution.

Observations	Inference	
White PPt- (1)	502	- present
(mik)	Liberia de se	(1mk) Paralyla

- 3. You are provided with solid Carry out the tests and record your observations and inferences in the spaces provided.
 - (i) Place half a spatulaful of solid F in a non-luminous flame to ignite.

Observations	Inference
- Melt - Burns with tellow	C=dor-CEC-
soots Hame. (1mk)	(1mk)

(ii) Place the rest of the solid in a test-tube. Add about 6cm³ of distilled water and shake the mixture well. Divide the solution into 3 portions.

Observations	Inference
Discovered to from	Polar Solvent.
Uniform Solution/2mk)	(½mk)

(iii) To about 2cm³ of the solution, add a spatulaful of sodium hydrogen carbonate.

Observations		inference
Efferregence	(1mk)	Hot present. (1mk)

(iv)To about 2cm³, add 2 drops of acidified potassium manganate (vii) solution.

Observations	Inference	
Puple HILKMING	-C=c - ~ c=c	Pendyes to 2-04
decolounted	Wesent, (1/2mk)	

(v) To another 2cm³, add 2 drops of bromine water.

Observations	1	Inference
tellow bronjike	water	C=C ~ C=C-
decolonical	(1mk)	Wesent (1/2mk)

THIS IS THE LAST PRINTED PAGE

its'