MARKING SCHEME

1. (a) (i) to the left;
(ii) current produces magnetic field/coil becomes magnetic; cause of movement in correct context;
[Reject attraction/repulsion]
(b) oscillates/vibrates/moves left then right/eq; 1
(c) $\mathrm{v}=\mathrm{f} \times \lambda$; [In any correct form]
$=800(\mathrm{~Hz}) \times 0.4(\mathrm{~m})$;
$=320(\mathrm{~m} / \mathrm{s}) ; \quad$ [Bald correct answer scores 3 marks]
2. (a) (i) voltage has both + and - values/either direction;
(ii) amplitude - (\pm) 2.6 (V);
period - $0.024(\mathrm{~s})$;
(iii) A calculation to include:
3. $f=\frac{1}{T}=\frac{1}{0.024 \mathrm{~s}}$;
4. $=41.7 \mathrm{~Hz} ;$ [Allow ecf from (ii)]

2
(b) (i) An explanation to include:

1. appreciation that the coil is in the magnet's field;
2. field is changing/field lines cut;

2
(ii) increases (the induced voltage and) the brightness;
increased rate of change of field/cut lines more often/OWTTE;
[Accept a reasoned energy argument]
(c) A suggestion to include:

1. to produce/create d.c./diode allows current/electricity to pass in one direction only/conducts only in one direction;
2. prevents discharge of battery (through coil);
3. (a) (i) changing polarity,
(ii) Any two from:

- stronger magnet;
- more turns;
- increase speed rotation;
- placing coil on soft iron core;

$$
2
$$

(b) (i) An explanation to include:

- higher V, less I;
(ii) $\frac{\mathrm{N}_{\mathrm{p}}}{\mathrm{N}_{\mathrm{s}}}=\frac{\mathrm{V}_{\mathrm{p}}}{\mathrm{V}_{\mathrm{s}}} ;=\frac{25000}{400000}=\frac{1}{16}\left(\right.$ or $\frac{16}{1}$ if secondarytoprimary $) ;$;
(c) Advantage: less resistance;

Disadvantage: heavier;
4. (a) (i) An explanation to include:

1. force produced;
2. because of the magnetic fields of coil and permanent magnet; 2
(ii) moves to the left/ -3/backwards; 1
(iii) larger current/stronger magnet/more coils/weaker spring; 1
(b) to return the needle to zero when current stopped; to stop needle moving too far for (small) currents; 2
3. (a) (i) A continuation of the graph to show:
4. negative arc;
5. completes cycle at 0.4 second;
6. quality sine curve;
(ii) A sketch to show:
7. smaller maximum voltage;
8. longer time period;
(b) (i) A calculation to include:

$$
\text { 1. } \begin{aligned}
& \frac{N_{P}}{N_{S}}=\frac{V_{P}}{V} \\
& \frac{3200}{N_{S}}=\frac{240}{30}
\end{aligned}
$$

2. $3200=8 \times N_{\mathrm{s}}$;
3. $N_{\mathrm{s}}=400$;
(ii) A calculation to include:
4. $V \times I \times t=30 \times 0.4 \times 1$;
5. 12 (J);
(iii) A calculation to include:
6. efficiency $=\frac{\text { energyout }}{\text { energyin }}$

$$
\begin{aligned}
& =\frac{12}{15} ;[\text { Allow ecf from part }(\mathrm{ii})] \\
& =80 \%(0.8)
\end{aligned}
$$

$$
3
$$

6. (a) (i) $\frac{V_{P}}{V_{S}}=\frac{N_{P}}{N S}$;

$$
\text { [Must be in equation using symbols or words] } 1
$$

(ii) A calculation to include:

1. $\frac{15000}{N s}=\frac{240}{12}$;
2. $N_{\mathrm{s}}=750$;
[If 1500 used instead of 15000 to give 75 allow 1 mark]
[75 with no evidence scores 0 marks]
(b) A calculation to include:
3. current $=\frac{E}{V t} / 250=240 \times \mathrm{I}$;
[$E=V \times I \times t$ scores 0 marks]
4. $\frac{250}{240 \times 10}$;
5. $=0.104 / 0.1 \mathrm{~A}$;
[Bald, correct answer scores 3 marks]
[0.1 with no units - 2 marks]
[1.04 / 1 A - 1 mark]
[Using $P=V I$ route is acceptable]
(c) (i) Calculation to include:
6. $\frac{225}{250}$ / OUTPUT / INPUT;
7. $=0.9 / 90 \%$;
(ii) An explanation to include:
8. sound / energy still lost as heat / eddy currents / hysteresis;
9. in wires / core / coil;
[Accept eddy currents in the core for 2 marks]
[Accept hysteresis losses in the core for 2 marks]
[Accept sound due to mains hum for 2 marks]
[Allow resistance in wires for 1 mark]
[heat / light / sound in the wires scores 0 marks]
