MARKING SCHEME

1.	(a)	(i)	to the left;		1		
		(ii)	current produces ma cause of movement i [Reject attraction/ret	gnetic field/coil becomes magnetic; in correct context; pulsion]	2		
	(b)	oscil	lates/vibrates/moves le	eft then right/ea:	- 1		
	(c)) $v = f \times \lambda;$ [In any correct form]		[In any correct form]	-		
		- c = 3	20 (m/s); [Bald correct answer scores	[Bald correct answer scores 3 marks]	3	[7	7]
2.	(a)	(i)	voltage has both + a	nd – values/either direction;	1		
		(ii)	amplitude - (: period - 0	±) 2.6 (V); .024 (s);		2	
		(iii)	A calculation to incl	ude:			
			1. $f = \frac{1}{T} = \frac{1}{0.5}$	$\frac{1}{024s};$			
			2. = 41.7 Hz;[Allow ecf from (ii)]	2		
	(b)	(i)	An explanation to in	clude:			
			 appreciation field is characteristic 	n that the coil is in the magnet's field; nging/field lines cut;	2		
		(ii)	increases (the induce increased rate of cha [Accept a reasoned e	ed voltage and) the brightness; nge of field/cut lines more often/OWTTE; energy argument]	2		
	(c)	A suggestion to include:					
		1. to produce/create d.c./diode allows current/electricity to pass in on		e direction			
			only/conducts only i 2. prevents discharge	n one direction; e of battery (through coil);	2	[11]
3.	(a)	(i)	changing polarity,		1		
		(ii)	Any two from: • stronger magnet • more turns; • increase speed • placing coil on	et; rotation; soft iron core;	2		
	(b)	(i)	An explanation to in • higher V, less	clude: I;			

PEAK SUCCESS EDUCATION

	 less I, lower heating effect; 			2	
		(ii)	$\frac{N_{p}}{N_{s}} = \frac{V_{p}}{V_{s}}; = \frac{25000}{400000} = \frac{1}{16} \left(\text{or} \frac{16}{1} \text{ if secondarytoprimary} \right);;$	3	
	(c)	Adva Disa	antage: less resistance; dvantage: heavier;	2	[10]
4.	(a)	(i)	An explanation to include: 1. force produced; 2. because of the magnetic fields of coil and permanent magnet;	2	
		(ii)	moves to the left/ –3/backwards;	1	
		(iii)	larger current/stronger magnet/more coils/weaker spring;	1	
	(b)		to return the needle to zero when current stopped;		
			to stop needle moving too far for (small) currents;	2	[6]
5.	(a)	(i)	 A continuation of the graph to show: 1. negative arc; 2. completes cycle at 0.4 second; 3. quality sine curve; 	3	
		(ii)	A sketch to show: 1. smaller maximum voltage; 2. longer time period;	2	
	(b)	(i)	A calculation to include: 1. $\frac{N_{P}}{N_{S}} = \frac{V_{P}}{V}$ $\frac{3200}{N_{S}} = \frac{240}{30};$		
			2. $3200 = 8 \times N_{\rm s};$		
			3. $N_{\rm s} = 400;$	3	
		(ii)	A calculation to include: 1. $V \times I \times t = 30 \times 0.4 \times 1$; 2. 12 (J);	2	
		(iii)	A calculation to include:		
			1. efficiency = $\frac{\text{energyout}}{\text{energyin}}$		
			$=\frac{12}{15}$; [Allow ecf from part (ii)]		
			= 80% (0.8);	3	[13]

PEAK SUCCESS EDUCATION

6.	(a)	(i)	$\frac{V_P}{V_S} = \frac{N_P}{N_S};$ [Must be in equation using symbols or words]	1	
		(ii)	A calculation to include: 1. $\frac{15000}{N_s} = \frac{240}{12};$ 2. $N = 750;$	2	
			[If 1500 used instead of 15000 to give 75 allow 1 mark] [75 with no evidence scores 0 marks]	2	
	(b)	A ca	lculation to include:		
		1. cu	$arrent = \frac{E}{Vt} / 250 = 240 \times I;$		
		[]	$E = V \times I \times t$ scores 0 marks]		
		2. $-\frac{1}{2}$	$\frac{250}{140\times 10}$;;		
		3. =	0.104 / 0.1 A;	3	
		[Bald, correct answer scores 3 marks] [0.1 with no units – 2 marks] [1.04 / 1 A – 1 mark] [Using <i>P</i> = <i>VI</i> route is acceptable]			
	(c)	(i)	Calculation to include:		
			1. $\frac{225}{252}$ / OUTPUT / INPUT;		
			2. = 0.9 / 90 %;	2	
		(ii)	An explanation to include:		
			 sound / energy still lost as heat / eddy currents / hysteresis; in wires / core / coil; [Accept eddy currents in the core for 2 marks] [Accept hysteresis losses in the core for 2 marks] [Accept sound due to mains hum for 2 marks] [Allow resistance in wires for 1 mark] 	2	
			[heat / light / sound in the wires scores 0 marks]		[10]