GAS LAWS

1.

$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}[1 \mathrm{~m}]$
Substituting the values
$2 \times 8=P_{2} \times 10[1 \mathrm{~m}]$

$$
\mathrm{P}_{2}=\frac{2 \times 8}{10}=1216 \mathrm{~mm} \text { of } \mathrm{Hg}{ }_{[1 \mathrm{~m}]}
$$

The pressure that must be maintained $=1216 \mathrm{~mm}$ of Hg
2.
$P_{1} V_{1}=P_{2} V_{2}[1 m]$
Substituting the values
$P_{1} \times 600=4 \times 2400[1 \mathrm{~m}]$

$$
P_{1}=\frac{4 \times 2400}{600}=12160 \mathrm{~mm} \mathrm{of} \mathrm{Hg}
$$

Initial pressure $=12160 \mathrm{~mm}$ of Hg [1m]
3.

```
P}\mp@subsup{\textrm{V}}{1}{}=\mp@subsup{P}{2}{}\mp@subsup{V}{2}{}\mathrm{ (at constant temp.)(1mk)
4\times1 = 1 x 1/2; (1mk)
V
```

4.

(a) Is the temperature at which a body is assumed to have zero internal energy / volume;
(b) Read gases have molecules with definite volume while idea molecules have no volume; (1mk)

Molecules of real gases white for ideal gas it is assumed
(c)
(i) A-I
S-I
P-2
C-1
(3mks)
(ii) Slope =

(1 mk)
(1mk)
$=0.1103 \mathrm{~cm} 3 / 0 \mathrm{C}$

(iii) Real gases get liquefied before zero
volume is reached
(1mk)

- The molecules of real gases have
definite volume;
(1mk)

5.

(a) (i) (molecules) hit the wall/cylinder B1
any other point to explain large pressure, e.g. small distance between molecules or hit often/frequently or many hit walls each sec or hit/move fast B1
(ii) greater distance between molecules or fewer hit (per sec) or fewer molecules
(in cylinder) or molecules leave cylinder B1
(b) P1V1=P2V2 or PV = constant B1
$0.002 .200=1 . V$ or 0.4 seen $C 1$
0.398 or 0.4 m 3 A1 6
6.
$\mathrm{V}_{1}=400 \mathrm{ml} \mathrm{V} 2=600 \mathrm{ml}$
$\mathrm{T}_{1}=15^{\circ} \mathrm{C}+273=288 \mathrm{~K} \quad[1 \mathrm{~m}]$

$$
\text { Applying Charles' Law } \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{1}}
$$

Substituting the values

$$
T_{2}=\frac{288 \times 600}{400}_{[1 \mathrm{~m}]}
$$

$\mathrm{T}_{2}=432 \mathrm{~K}[1 \mathrm{~m}]$
T_{2} in degree Celsius $=432-273=159^{\circ} \mathrm{C}[1 \mathrm{~m}]$
7.
$\mathrm{V}_{1}=400 \mathrm{ml}, \mathrm{V}_{2}=300 \mathrm{ml}$
$\mathrm{T}_{1}=\left(227^{\circ} \mathrm{C}+273\right)=500 \mathrm{~K} \mathrm{~T}_{2}=?$
Applying Charles' Law $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
[1m]
Substituting the values

$$
T_{2}=\frac{500 \times 300}{400}
$$

$\mathrm{T}_{2}=375 \mathrm{~K}[1 \mathrm{~m}]$
T_{2} in degree Celsius $=375-273=102^{\circ} \mathrm{C}[1 \mathrm{~m}]$
Alteration of temperature $=227^{\circ} \mathrm{C}-102^{\circ} \mathrm{C}=125^{\circ} \mathrm{C}$

The temperature should be reduced by $125^{\circ} \mathrm{C}$. [1m]
[Total 4m]

