3.0.0 Divisibility Tests Answers

1. n divided by 5 yields a remainder equal to 3 is written as follows $\mathrm{n}=5 \mathrm{k}+3$, where k is an integer.
add 2 to both sides of the above equation to obtain
$n+2=5 k+5=5(k+1)$
The above suggests that $\mathrm{n}+2$ divided by 5 yields a remainder equal to zero. The answer is B.
2. If n is divisible by 3,5 and 12 it must a multiple of the Icm of 3,5 and 12 which is 60 .
$\mathrm{n}=60 \mathrm{k}$
$n+60$ is also divisible by 60 since
$n+60=60 k+60=60(k+1)$
The answer is D .
3. It is the Icm of 5,7 and 20 which is 140 .

The answer is E .
4. When n is divided by 8 , the remainder is 3 may be written as
$\mathrm{n}=8 \mathrm{k}+3$
multiply all terms by 6
$6 n=6(8 k+3)=8(6 k)+18$
Write 18 as $16+2$ since $16=8$ * 2 .
$=8(6 k)+16+2$
Factor 8 out.
$=8(6 \mathrm{k}+2)+2$
The above indicates that if 6 n is divided by 8 , the remainder is 2 . The answer is C .
5. We first expand $(2 n+2)^{2}$
$(2 n+2)^{2}=4 n^{2}+8 n+4$

Factor 4 out.

$$
=4\left(n^{2}+2 n+1\right)
$$

$(2 n+2)^{2}$ is divisible by 4 and the remainder is equal to 0 . The answer is A.

