## PEAK SUCCESS EDUCATION

Kenya Certificate of Secondary Education

## MARKING SCHEME

1. (a) (i) A calculation to include:

- $=1.5 \times 10 \times 1.2$;
- $=18$;
- J;
(ii) A calculation to include:
- power out $=\frac{\text { work done }}{\text { time }}$;
- $\quad=\frac{18}{4}$;
- $\quad=\quad 4.5 \mathrm{~W}$;
[Accept ecf from part (a)(i)]
(iii) A calculation to include:
- efficiency $=\frac{\text { power out }}{\text { power in }}(\times 100)$;
- $=\frac{4.5}{30}(\times 100)$;
- $\quad=15 \%$;[Allow ecf]
[Accept 0.15]
[Ignore units if given]
(b) friction (with moving parts)/heat produced/sound/sparking;
[Reject light]

2. (a) (i) A calculation to include:
3. $\mathrm{W}=50 \times 10 / \mathrm{mg}$;
4. $=500$;
5. $\quad \mathrm{N}$; [Bald, correct answer scores 3 marks]
(ii) $\quad$ work done $=$ force $\times$ distance $/ 500 \times 2.5 ; \quad$ [Allow ecf from part (a)(i)] $=1250$; J; [Bald, correct answer scores 3 marks]
(iii) A calculation to include:
6. $\frac{1250}{5}$; [Allow ecf from part (a)(ii)]
7. $250(\mathrm{~W})$; [Bald, correct answer scores 2 marks]
(b) power out put was greater;
less time;
[Accept correct calculation for two]]
[Reject quicker]
[Beware of candidates who discuss more energy]
8. (a) (i) kinetic / movement / motion energy; 1
(ii) (transferred) to heat / thermal / degraded energy; 1
[Reject sound by itself]
[Long lists not acceptable]
(b) An explanation to include:
9. the car gains gravitational / potential energy as it moves up the hill;
10. this must come from the (kinetic) energy of the car;
[Accept kinetic energy to potential energy for 2 marks]
[Ignore answers related to force]
(c) Either
less work has to be done by the brakes as some energy transferred to gravitational potential energy / OWTTE;
or
gravitational force helping to slow down the car (OWTTE);
[Allow pulled by gravity]
(d) An explanation to include two from:
11. when stopping kinetic energy transferred to heat;
12. lost to atmosphere / when braking is lost;
13. more fuel burnt when speeding up; [Allow used]
14. more energy used when speeding up / faster speeds;
[Ignore reference to force]
[Do not credit an answer where energy increased / needed for
speeding and slowing down]
plus one communication mark for ensuring that spelling, punctuation and grammar are accurate so that the meaning is clear
15. (a) (i) A calculation to include:
16. power $=\frac{\text { energy }}{\text { time }}$;
[Allow power $=\frac{\text { work }}{\text { time }}$ ]
17. $\quad=\frac{1.04}{4}=0.26(\mathrm{~J} / \mathrm{s}) ;$
[Bald, correct answer scores 2 marks]
(ii) A calculation to include:
18. $m \times g \times h=\mathrm{gpe}$;
[Allow work $=$ force x distance]
19. $1.04=1.3 \mathrm{~h}$;
20. $\mathrm{h}=0.8(\mathrm{~m})$;
[Bald, correct answer scores 3 marks]
(iii) A calculation to include:
21. efficiency $=\frac{\text { output }}{\text { input }} \times(100) / \frac{0.26}{0.60} \times(100) / \frac{1.04}{2.40} \times(100)$;
22. $=43(\%)$;
[Allow 0.43 / 40 (\%)]
[Allow ecf only where $\frac{\text { powerout }}{\text { power }}$ is used]
(b) (i) An explanation to include two from:
23. motor is acting as a generator;
24. moving / turning motor / coil (in magnetic field) / gravitational potential energy to kinetic energy / electrical energy as it falls;
25. voltage / current induced / induction / electromagnetic induction;
(ii) An explanation to include:
26. speed increases / kinetic energy increases / accelerates / coil rotated faster;
27. bigger (induced) voltage / current / magnetic field cut more
28. (a) A calculation to include:
29. gravitational potential energy $=\mathrm{mgh} / \mathrm{Fd}$;
30. 

$$
=0.2 \times 10 \times 1.5=3 \text {; }
$$

(b) 3 ;
[Allow ecf from part (a)]
(c) $\mathrm{ke}=1 / 2 \mathrm{~m} \mathrm{v}^{2} / \mathrm{v}^{2}=\frac{2 \times 3}{0.2}$;
$\mathrm{v}=5.47$;
[Allow ecf from part (b)]
Or using
$v^{2}=u^{2}+2 a s ;$
$\mathrm{v}=5.47$;
Or if using $5.5 \mathrm{~m} / \mathrm{s}$
3.025 s - 1 mark
an explanation - 1 mark
6. (a) (i) correct points $\pm 1 / 2$ square;; -1 for incorrect point points joined by a smooth curve;
(ii) their value from graph (approx $7.4(\mathrm{~m} / \mathrm{s})$ ); [must have a line]
(b) $\mathrm{W}=$ force $\times$ distance moved / [seen or implied]

$$
=75054
$$

$$
=3000
$$

J;
[Accept kJ if 3000 not given]
[Accept 3 kJ for 3 marks, 3000 or 3000 kJ for 2 marks but 3 unqualified scores 0 marks]

