LINEAR MOTION

1. (a) (i) arrow pointing to the left; 1
(ii) A; 1
(b) (i) both points plotted correctly;
line completed on graph; 2
(ii) 20 and 30 ;
[Accept any two values between 20 and 30] 1
(iii) 0 and 20;
[Accept any two values between 0 and 20]
line is steepest/calculation/reference to travelling greater distance in same or less time;
2. (a) An explanation to include:
3. van plus reference to change in speed;
4. in same time/ $5 \mathrm{~s} / 10 \mathrm{~s}$;
(b) An explanation to include:
5. same mass/weight/eq;
6. bigger acceleration;
[Accept also $F=m a$ argument) 2
7. (a) An explanation to include three from:
8. initially driving force greater than resistive force;
9. resistive force increases;
10. resultant or unbalanced force decreases/acceleration decreases (in correct context);
11. forces equal in size at constant speed/resultant force is zero;

3
(b) greater acceleration/less driving force;
since less mass ($F=m a$);
(c) (i) $\mathrm{KE}=1 / 2 \times \mathrm{m} \times \mathrm{v}^{2}=1 / 2 \times 85 \times 12^{2}$;

$$
\begin{gather*}
=6120 ; \\
\mathrm{J} ; \tag{3}
\end{gather*}
$$

(ii) time $=\frac{\text { energy }}{\text { power }}=\frac{6120 \mathrm{~J}}{200 \mathrm{~W}} ;$ [Allow ecf]

$$
\begin{equation*}
=34 \mathrm{~s} \tag{2}
\end{equation*}
$$

(d) (i) 20 (J) as heat/waste energy/to atmosphere/surroundings;
(ii) efficiency $=\frac{\text { useful energy out }}{\text { energy in }}$;

$$
\begin{align*}
& =\frac{180 \mathrm{~J}}{200 \mathrm{~J}} \\
& =0.90 / 90 \% \tag{3}
\end{align*}
$$

(iii) all the energy goes to atmosphere/surroundings/work done against/overcoming friction;
[Reject energy lost as heat/friction unqualified]
4. (a) drag/resistance/force/push/thrust/upthrust;
air/atmosphere;
[Reject wind/friction] 2
(b) 56; 1
(c) (i) pull of Earth/weight/gravitational pull/downward (pull) greater than upward (push)/there is resultant force downwards;
[Allow gravity]
(ii) both forces the same/balanced/equal/resultant force is zero/OWTTE; 1
(d) (i) speed decreases;
new lower terminal velocity/horizontal region shown; (Independent marking points)
(ii) An explanation to include three from:

- air resistance increases;
- at start upward force greater than downward force;
- eventually forces balance;
- larger surface area;
- air resistance decreases as parachutist slows down;

3
5. (a) An explanation to include:

1. it increases;
2. cyclist moves further in same time interval/each time; 2
(b) 12 m ; 1
(c) X marked anywhere between 21 and 27 m ;
[Reject 28 m$] \quad 1$
3. (a) (i) friction (between book and table top); 1
$\begin{array}{rlr}\text { (ii) } & \text { (transferred to) heat; } & \\ & {[\text { Ignore sound] }} \\ & {[\text { Reject other answers] }} & 1\end{array}$
(b) forward push of ground/force due to ground/forward push on shoe/friction; [Ignore reaction with ground] 1
4. (a) A description to include:
5. upward push/reaction/thrust;
6. of the ground on the athlete;
(b) (i) $0.39(\mathrm{~s})$;
[Accept 0.4 (s)]
1
(ii) A calculation to include:
$=$ area below graph $/$ average velocity \times time;
$=\frac{1}{2} \times 3.8 \times 0.39$;[Allow ecf from (b)(i) $-0.76(\mathrm{~m})$]
$=0.74(\mathrm{~m})$;
[If 4.0 used for velocity then the first and the third marks can be credited]
(iii) A calculation to include:

$$
\text { 1. acceleration }=\frac{(\mathrm{v}-\mathrm{u})}{\mathrm{t}} \text {; }
$$

2. substitution of correct data, eg $\frac{3.8}{0.39}$; [Allow $\frac{7.6}{0.78}$]
3. $=9.7 \mathrm{~m} / \mathrm{s}^{2} ;$ [Accept $-9.7 \mathrm{~m} / \mathrm{s}^{2}$]

3
(iv) downwards; negative gradient/backwards slope/athlete slowing down/retardation/deceleration; 2
(v) A calculation to include:

$$
\begin{array}{ll}
\text { 1. } \mathrm{F} & =\mathrm{ma} ; \\
\text { 2. } & =65 \mathrm{~kg} \times 9.7\left(\mathrm{~m} / \mathrm{s}^{2}\right) ;[\text { Allow ecf from } \mathrm{b}(\mathrm{iii})] \\
3 . & =630-633(\mathrm{~N}) ; \tag{3}
\end{array}
$$

[Accept either $65 \times 10 \mathrm{~m} / \mathrm{s}^{2}=650 \mathrm{~N}$ for 2 marks or $65 \times 9.81 \mathrm{~m} / \mathrm{s}^{2}=638 \mathrm{~N}$ for 2 marks]
(vi) downward pull of the Earth/gravitational pull;
[Reject gravity]

$$
1
$$

8. (a) $F=m \times a / W=m \times g$;
$=70 \times 10$;
$=700 \mathrm{~N}$;
(b) speed constant;
upward force = downward force/
forces balanced/from $\mathrm{F}=$ ma if $\mathrm{a}=0$;
(c) A description and an explanation to include:

- opens parachute at C;
- drag force increased/upward force increased;
- lower terminal velocity;
plus 1 communication mark for using a suitable structure and style of writing;4
(d) shows lower terminal velocity at D;
shows longer time to land;

9. (a) 600 m ; 1
(b) 200-100;

100 m ;
(c) it is a straight line; $\quad 1$
(d) Y ; greater slope/steeper line; $\quad 2$
10. (a) distance increases as speed increases / it increases / OWTTE; 1
(b) 138 - 140 m ; 1
(c) below the first line;
curve of similar shape to graph;
[Second mark conditional on first]
(d) A description to include:

1. kinetic / movement energy;
2. (to) thermal (heat) /sound energy; 2
[List after kinetic energy scores 0 marks for the second marking point]
(e) some kinetic energy transferred to gravitational potential energy / weight is extra retarding force / gravitational potential energy increases / gravitational pull / OWTTE; 1
3. (a) $0-2$ (seconds); 1
(b) upwards;
lift is slowing (even though it is falling);
[Direction must be mentioned to score second marking point]
(c) area below graph is height (distance travelled)
distance $=$ speed \times time;
$1 \times 1.8+6 \times 1.8+1 \times 1.8$;
3
$14.4(\mathrm{~m})$; [Allow ecf]
[Accept $8 \times 1.8 \rightarrow 14.4 \mathrm{~m}$ for 3 marks]
4. (a) points plotted correctly; [Deduct 1 mark for each error] 2 [Line not necessary]
(b) $3(\mathrm{~m} / \mathrm{s})$; 1
(c) (i) acceleration $=\frac{\text { changein velocity }}{\text { timetaken }} ; \quad 1$
[Accept $a=\frac{v}{\mathrm{t}}$ or $\frac{\text { velocity }}{\text { time }}$ or $\frac{\text { speed }}{\text { time }}$]
(ii) acceleration $=\frac{3}{15}$; [Allow ecf from part (b)]

$$
\begin{equation*}
=0.2\left(\mathrm{~m} / \mathrm{s}^{2}\right) \tag{2}
\end{equation*}
$$

[6]
13. (a) (i) area below graph / average velocity (speed) \times time;
[Reject velocity \times time]
(ii) A calculation to include:

1. Distance $=1 / 2 \times 15 \times 3$;
2. $\quad=22.5(\mathrm{~m})$;
[Allow 45 m for 1 mark]
(b) A calculation to include:
3. acceleration $=\frac{\text { changein velocity }}{\text { time }}$;
[Accept $a=\frac{v}{\mathrm{t}}$ or $\frac{\text { velocity }}{\text { time }}$ or $\frac{\text { speed }}{\text { time }}$]
4. $\quad=\frac{2}{10}=0.2\left(\mathrm{~m} / \mathrm{s}^{2}\right)$;
5. force $=$ mass \times acceleration;
6. $\quad=1.2 \times 10^{5} \times 0.2=2.4 \times 10^{4} \mathrm{~N}$;
[Allow ecf if acceleration calculated and evidence of this is shown]
7. (a) plots;
[Deduct 1 mark for each error] 2
(b) straight line / goes up equally / uses data table; $\quad 1$
(c) A calculation to include:
8. speed = gradient $/$ slope $/$ distance/time;
9. $=\frac{750}{25} /$ spot value from graph or table;
10. $=30 \mathrm{~m} / \mathrm{s}$;
(d) An explanation to include:
11. friction / drag / air resistance present;
12. no unbalanced force / equals driving force; 2
13. (a) (i) 90 ; 1
(ii) $\quad(39-40)$; 1
(iii) An explanation to include:
14. $(15-16) \mathrm{s}$;
15. slows down / less (lower) speed / reference to graph / decelerate;
[Reject change in speed] 2
(iv) 20 ; 1
(b) A description to include three from:
16. $\mathrm{F}=\mathrm{mg}$;
17. F increases;
18. $\mathrm{F}>\mathrm{mg}$

F decreasing;
4. $\mathrm{F}=\mathrm{mg}$;
5. $\mathrm{mg}=$ constant;
[OWTTE in right context] 3

