

232/1

MARANDA HIGH SCHOOL

1

Kenya Certificate of Secondary Education PRE-MOCK EXAMINATIONS 2023

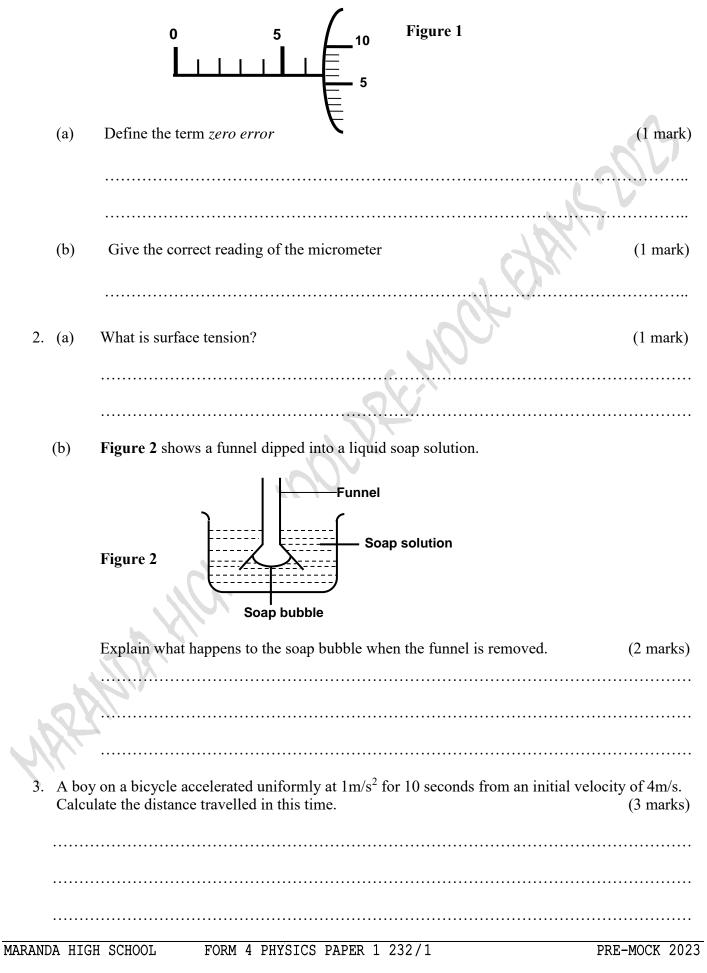
PHYSICS

April 2023 – 2 Hours

Pa	aper	ſĻ
	_	

Name:Adm No:

Instructions to candidates

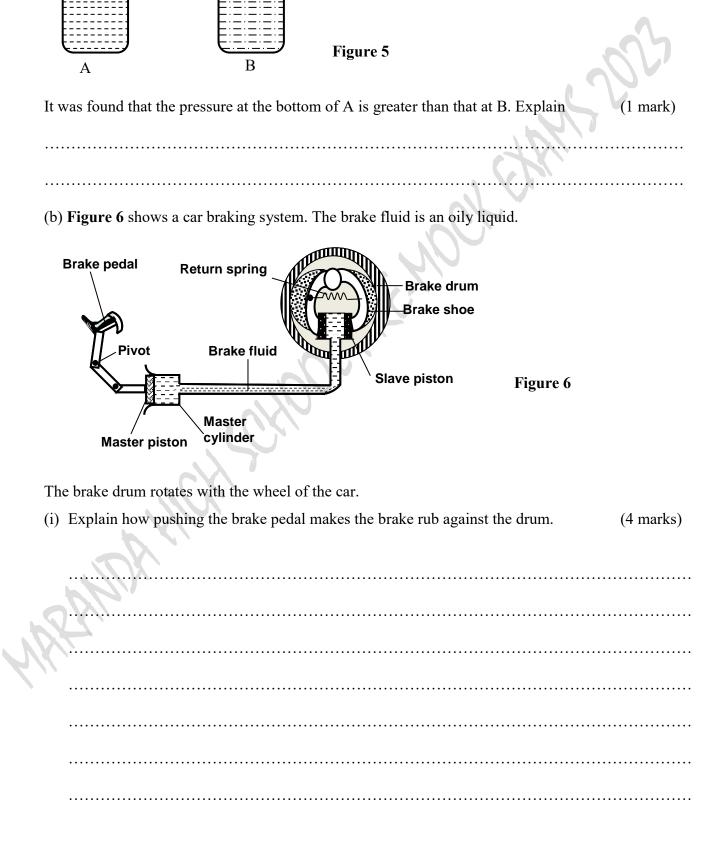

- This paper consist of TWO sections; A and B. Answer ALL the questions in section A and B in the spaces provided.
- ALL working MUST be clearly shown. Mathematical tables, electronic calculators and slide rules may be used.
- Candidates should check the question paper to ensure that all the **11** pages are printed as indicated and that no questions are missing.

Take: density of water = $1gcm^{-3}$, g = 10N / kgFor Examiner's Use Only

SECTION	Question	Maximum Score	Candidate's Score
Α	1-10	25	
В	11	15	
- Mor	12	10	
	13	09	
	14	12	
-	15	09	
TOT	ΓΑL	80	

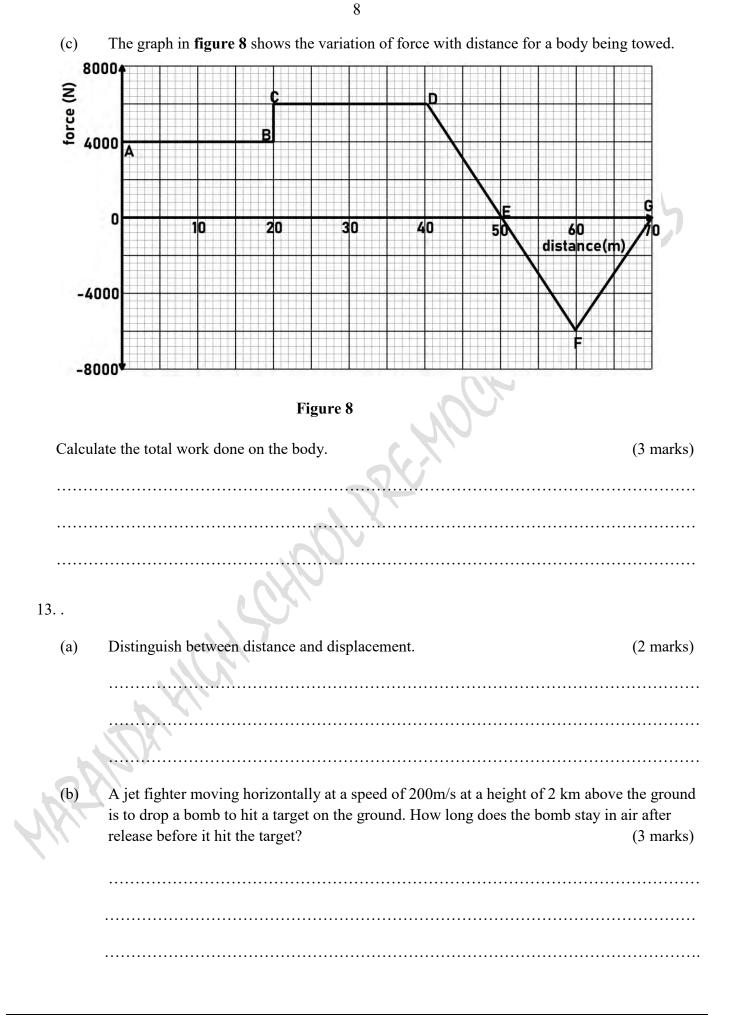
SECTION A: 25 MARKS

1. The micrometer screw gauge shown in **figure 1** was found to have an error of +0.04 mm


- 4. An object is attached to a spring balance and its weight determined in air. It is then gently lowered into a beaker containing water.
- State what happens to the reading. (1 mark) (a) (b) Explain the force that causes observation in (a) above. (1 mark)5. A metal cube weighs 1.0N in air and 0.8N when totally immersed in water. Calculate: Volume of water it displaces. (a) (2 marks) the density of the cube (b) (2 marks) 6. State how the velocity of a moving fluid varies with pressure. (1 mark)Γ..... 7. Figure 3 shows a bottle opener. 11cm Pivot P .5cr **Bottle opener** Bottle cap Effort = 30N Figure 3 A force of 30N is applied at a distance of 11cm from the pivot P. A force F acts at the edge at a distance 1.5cm from P. Calculate the force F on the edge of the cap. (2 marks) MARANDA HIGH SCHOOL FORM 4 PHYSICS PAPER 1 232/1

8. **Figure 4** shows a manometer used to measure the pressure difference between the air inside a plastic container and the atmosphere outside.

	Platform Force F 90 Manometer area 0.1m ²	
	h h 70 $$ Meter rule	
	Air Flexible plastic container	
	Calculate the force F exerted on the container. (3 marks	5)
		••
		••
		••
9.	A student observes that in the morning an overhead electrical cable is straight and taut. At midday the student observes that the same cable has sagged. Explain these observations. (2 marks	
10	0. A rubber tube is inflated to pressure of 2.7×10^5 pa and volume 3800 cm ³ at temperature of 25° C. If then taken to another place where the temperature is 15° C and the pressure is 2.5×10^5 pa. Determine the new volume (3 marks)	ine


SECTION B: 55 MARKS

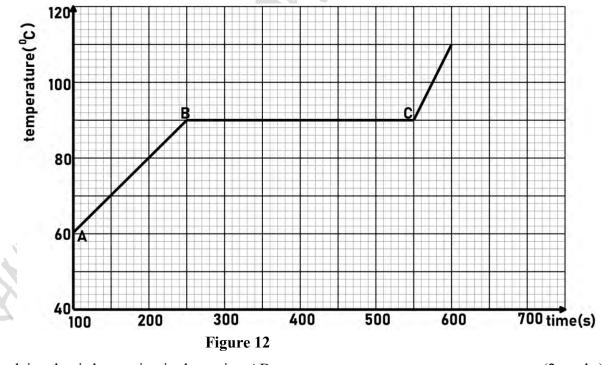
11. (a) Figure 5 shows two containers filled with two different liquids to the same height.

piston.	are created in the brake fluid by the master piston.	(2 mai
	are created in the brake nutu by the master piston.	(2 mai
		•••••••••••••••••••••••••••••••••••••••
(II) The cross-sectiona piston by the brake	l area of each slave piston is 2.8 cm ² . Calculate the e fluid.	force exerted on each (2 mar
	on the master piston is greater than the force applie	-
pedal. Using the pi	inciple of moments, explain this	(2 mar
	ter cylinder sealed at one end. Instead of brake fluid	
contains air.	ter cylinder sealed at one end. Instead of brake fluid Sealed end	
	ter cylinder sealed at one end. Instead of brake fluid Sealed end	
contains air.	ter cylinder sealed at one end. Instead of brake fluid	, the cylinder
contains air. Piston of area 2.0cm When a force is applie	ter cylinder sealed at one end. Instead of brake fluid	, the cylinder e 7
contains air. Piston of area 2.0cm When a force is applie air increases but the te	ter cylinder sealed at one end. Instead of brake fluid	, the cylinder e 7
contains air. Piston of area 2.0cm When a force is applie air increases but the te	ter cylinder sealed at one end. Instead of brake fluid	, the cylinder e 7 4.0 cm. The pressure o (1 mar
contains air. Piston of area 2.0cm When a force is applie air increases but the te	ter cylinder sealed at one end. Instead of brake fluid Sealed end Figure Air d to the piston, the length d changes from 6.0 cm to mperature stays constant. nolecules of air exert a pressure.	, the cylinder e 7 4.0 cm. The pressure o (1 mar
contains air. Piston of area 2.0cm When a force is applie air increases but the te (i) Describe how the r	ter cylinder sealed at one end. Instead of brake fluid Sealed end Figure Air d to the piston, the length d changes from 6.0 cm to mperature stays constant. nolecules of air exert a pressure.	, the cylinder e 7 4.0 cm. The pressure o (1 man

(iii)The initi air.	al pressure of the air inside the cylinder is $1.0 \ge 10^5$ pa.	Calculate the final pressure of the (2 marks)
12		
(a) Wha	t is a machine?	(1 mark)
The	gear wheel have an 80 teeth (driven) and 20 teeth (driven) and 20 teeth (driven) are fastened on axles of equal diameters such that a v d one axle will just raise 450N on the other axle.	
Calc	ılate:	
(i)	M.A	(2 marks)
(ii)	V.R	(2 marks)
(iii)	Efficiency of the machine.	(2 marks)
, ppp		

(c) Two equal masses travel towards each other on a frictionless air track at speeds of 60cm/s and 40cm /s as shown in **figure 9**.

	60cm/s	40cm/s	Figure 9	
	If they stick together on a	impact, what is the velocit	y of the masses after impact?	(2 marks)
				3
(d)	Figure 10 shows a simp	ble pendulum oscillating be	etween Y and Z.	
	Thin cord Pendulum bobY		UF GABLE,	
	7777777777	X Groun	Figure 10	
	State the type of energy	the body possesses at:		
	(i) Position Y	1 St.		(1 mark)
	(ii) Position X			(1 mark)
14 (a)	Define the term <i>latent</i> h	eat of fusion.		(1 mark)
(b)			electric heater, melting ice was the ice as shown in figure 11 . Th	
J.	was collected.	To power supply		
411.		eater		
	<u><u> </u></u>	E-:, Figur	re 11	

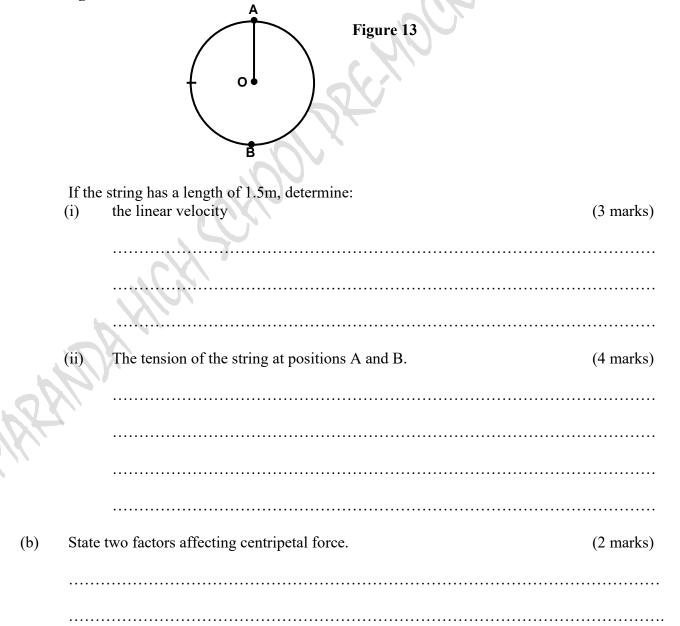

(i) Other than the current and voltage, state the measurement that would be taken to determine the quantity of heat absorbed by the melted ice in unit time. (1 mark

.....

(ii) If the latent heat of fusion of ice is L_j , show how measurement in (i) above would be used in determining the power P of the heater. (2 marks)

(iii)It is found that the power determined in this experiment is lower than the manufacturer's value indicated on the heater. Explain. (1 mark)

(c) A mass of wax of 1kg was heated uniformly by a 100W heating element until it melted. The graph in **figure 12** shows how the temperature of the wax varies with time.



(i) Explain what is happening in the region AB

(2 marks)

(ii) Calculate the specific heat capacity of the wax.	(2 marks)
(iii)Calculate the specific latent heat of fusion of wax.	(3 marks)
	. NT

- 15. .
 - (a) A stone of mass 450g is rotated in a vertical circle at 3 revolutions per second as shown in figure 13.

