PHYSICS -Paper 1

(THEORY) - 2 hours

Name:	Index Number:
School:	Date

MUMIAS WEST SUB-COUNTY JOINT EVALUATION

TERM 1 JUNE 2022

Instructions to candidates

- (a) Write your name, index number in the spaces provided above. (b)
- Sign and write the date of the examination in the spaces provided (c) This paper consists of **TWO** Sections: **A** and **B**.
- (d) Answer **ALL** the questions in section **A** and **B** in the spaces provided.
- (e) All working **MUST** be clearly shown.
- (f) KNEC mathematical tables and silent non programmable electronic calculators may be used.
- (g) This paper consists of 13 printed pages (h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing (i) Candidates should answer the questions in English

FOR EXAMINER'S USE ONLY

Section	Question	Maximum	Candidate's
		Score	Score
A	1 – 11	25	
	12	13	
В	13	10	
Б	14	12	
	15	12	
	16	09	
	Total Score	80	

SECTION A (25 MARKS)

1. Determine the reading of the vernier callipers shown in the **figure 1.**

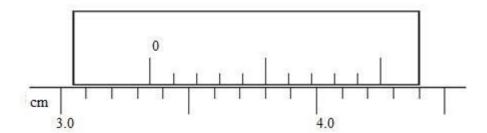


Fig. 1

......(1mk)

2. **Figure 2** shows the apparatus a student uses to investigate the extension of a spring.

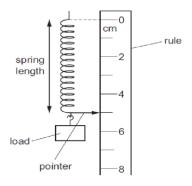


Fig. 2

The initial pointer position was at the 2cm mark, when a load of 4N is applied the pointer position is as shown. Find the spring constant of the material of the spring (2mks)

3. Give a reason why water wets glass. (1mk)

4. **Figure 3** shows a simple mercury barometer.

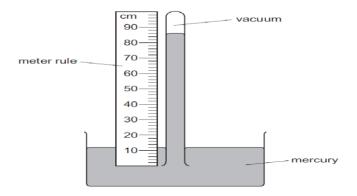


Fig. 3

(i) Determine the value of the atmospheric pressure in pass	cals.
---	-------

Take density of mercury = $13.6g/cm^3$	(2mks)
ii) State the reason why mercury is preferred to water as a barometric liquid	(1mk)

5. The diagram in **figure 4** shows the cross-section of a vacuum flask containing a hot liquid in a cold room. X and Y are points on the inside surfaces of the walls of the flask.

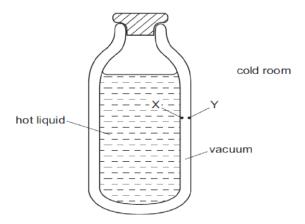


Fig. 4

Explain how heat transfer is minimized by the points X and Y	(2mk)
6. A stopwatch is used to time a runner in a race. Figures 5 and 6 show the stopwatch at	the start and
at the end of a lap of the race in seconds.	
0:50:10 fig. 5 start of lap fig. 5	
Determine the time runner took to finish the lap of the race.	(1mk)
7. Figure 7 shows a system at equilibrium and pivoted at its geometric center two with i solids.	dentical
Study it and answer the questions that follow:	
45cm → 50cm	
60N	_60N – water.
Fig.7	
Determine the relative density of solids.	(3mks)

8. 2 kg of iron at 80°C is placed in a copper can, mass 0.5kg, containing 1kg of water at 2 stirring, the temperature of the mixture is 30°C. Find the specific heat capacity of iron.(Ta heat capacity of water to be 4200 Jkg ⁻¹ K ⁻¹ and Copper 400 Jkg ⁻¹).	
9. Explain why a hole in a ship near the bottom is more dangerous than one nearer the sur	
10. A student inverted a rounded flask with a glass tube and inserted it into water as show	vn in figure
8.0 below;	
Fig. 8	
(a) When the student warmed the flask by rubbing it with his hands he noticed some bubb	oles
escaping from the end of the tube into the water. Explain. (2mks)	
Explain what happens in the glass tube when the student stops rubbing and lets the flask t	o cool.(1mk

11.) The handle of a screw jack shown in **figure 9** is 35cm long and the pitch of the screw is 0.5cm.

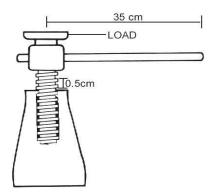
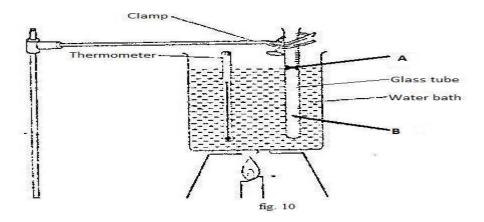


fig. 9

	(i)	Determine is the veloc	city ratio of the syste	m.		(2mks.)
						•••••
				•••••		•••••
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			
(ii)	W	ork out the force that m	ust be applied at the	end of the handle	when lifting a load o	f 2,000N if
	the	e efficiency of the jack	is 40%.			(3mks)

SECTION B (55 MARKS)


12. (a) The mass of a lift cage with its passenger is 500kg and the acceleration of free fall, g, is	10m/s^2 .	
The lift starting from rest moves upwards as follows:		
Accelerating uniformly at 1m/s ² for 5s; then travels at a constant speed for the next 10s and finally decelerates uniformly, coming to a stop after a further 5s.		
	(2mks)	
(ii) Sketch the velocity-time graph of this motion. ((2mks.)	
(iii) Determine is the total distance this lift ascends during the 20s.	2mks.)	
	•••••	
	• • • • • • • • • • • • • • • • • • • •	

(iii) State what the passenger experiences as the lift accelerates upwards.	(1mk.)
Determine for the entire motion:	
a) the potential energy.	(2mks)
b) the kinetic energy gained of the lift.	(2mks)
(c) the power developed by the lift during the of the motion.	(2mks)
13a) State Archimedes principle	(1mk)
•••••••••••••••••••••••••••••••••••••••	
b) A solid displaces $8.5~\rm cm^3$ of liquid when floating on a certain liquid and $11.5~\rm cm^3$ submerged in the	when fully
liquid. The density of the solid is 0.8 gcm ³ .	

Determine:

The upthrust on the solid when floating.	
i) The density of liquid.	(3mk)
iii) The upthrust on the solid when fully submerged	(3mk)
14. (a) Write the statement of the law that relates the volume of a gas to its temperature.	(1mk)
	•••••
	••••••
15. b) State two assumptions made for ideal gases.	(2mks.)

16. b) **Figure 10** shows an experiment set-up that may be used to investigate one of the gas laws. The glass tube has a uniform bore and it is graduated in millimetres.

(i)	Name the parts labelled A:	(1mk)
Des	scribe how the set-up would be used to verify the law under investigation.	(4mks)
•••		
•••		
••••		
iii)	Sketch a suitable graph for the expected results for an ideal gas.	(2mks)
••••		
••••		
iv)	A mass of oxygen gas occupies a volume of 1200 cm ³ at 273°C and a pressure of 1.2	2 atmospheres.
It is	s compressed until its volume is 600 cm ³ and its pressure is 3.0 atmospheres. Determ	ine the
tem	perature of the gas after compression.	(2mks)
•••••		
•••••		
•••••		

16. a) Distinguish between latent heat of fusion and specific latent of fusion.	(1mark)
	•••••
	•••••
	•••••
b) Figure 11 shows a block of ice. A thin copper wire with two heavy weights hang	ing from its ends-
passes over the block. The copper wire is observed to pass through the block of	ice without
cutting it.	
Block of ice Copper wire Weights	Wooden
Fig. 11	
(i) Explain this observation,	(3mks)
(ii)State and explain the effect of replacing the copper wire with a cotton thread.	(2mks)
	•••••
	•••••
(c) Figure 12. shows one method of measuring the specific latent heat of fusion of it	ice. Two

funnels A and B, contain crushed ice at 0° C.

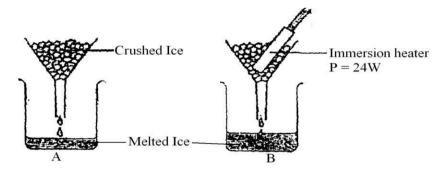
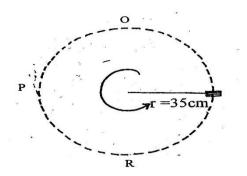



Fig. 12

The mass of melted ice from each funnel is measured after 11 minutes. The results are shown below.

	Mass of melted ice in $A = 24g$		
		Mass of melted ice in $B = 63g$	
(i)	Give the reason for setting up experiment A		
	•••••		
	(ii)	Determine the:	
	I.	quantity of heat supplied by the heater.	(2mks)
	 II.	mass of ice melted by the heater.	(1mk)
	11.	mass of ice meted by the neater.	(Tilk)
	III.	specific latent heat of fusion of ice.	(2mks

17. **Figure 13** below shows a mass of 500g moving in a vertical circle having a radius of 35cm at a constant velocity. It makes 2 revolutions in one second.

Fig. 13

	a) Indicate on the diagram the direction of centripetal force.	(1mk)
	b) Determine:	
I)	the linear velocity of the mass.	(3mks)
•••••		
•••••		
•••••		
•••••		
	the centripetal acceleration of the object	(2mks)
III)	centripetal force.	(3mks)
••••		
•••		

THIS IS THE LAST PRINTED PAGE.