Name	Adm. No:
232/3	School
PHYSICS	
Paper 3	
(PRACTICAL)	Date
Oct 2022	

 $2^{1/2}$ hours

NYAHOKAKIRA JOINT EXAMINATION

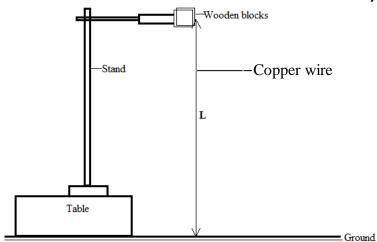
Kenya Certificate of Secondary Education CLUSTER 3 PHYSICS EXAMINATION Paper 3 (PRACTICAL) 2 1/2 hours

- (a) Write your name, admission number and the name of your school in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) This paper consists of two questions; 1 and 2.
- (d) Answer **all** the questions in sections 1 and 2 in the spaces provided.
- (e) All working must be clearly shown.
- (f) Silent non programmable electronic calculators may be used.
- (g) This paper consists of 9 printed pages.
- (h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (i) Candidates should answer the questions in English.

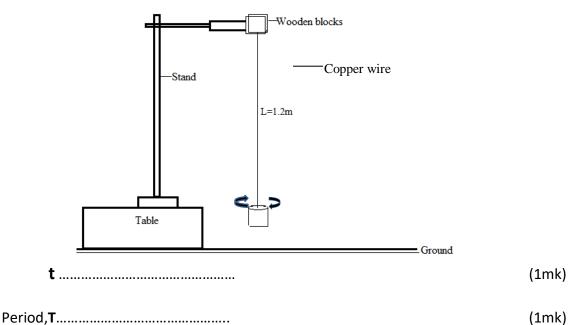
For Examiners Use Only

Question		Maximum Score	Candidate's Score
1		20	
2	Part A	12	
_	Part B	08	
	Total Score	40	

QUESTION ONE


You are provided with the following:

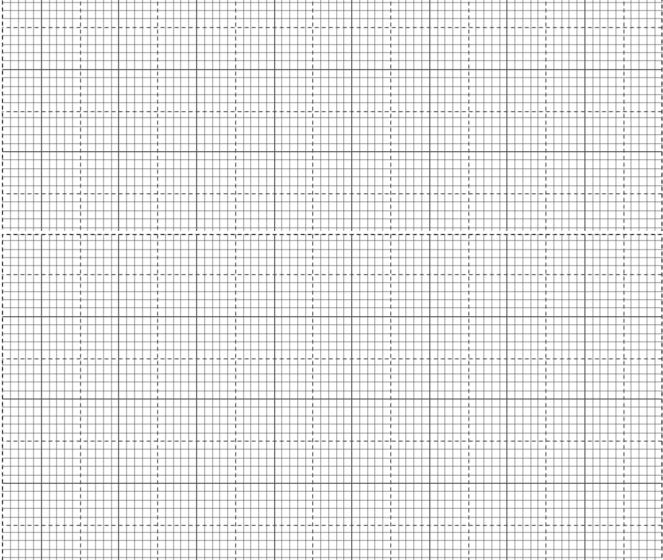
- A 100g mass.
- A copper wire of about 120cm long.
- Stop watch
- Metre rule
- Two small woooden blocks.
- A complete retort stand.


Proceed as follows:

a) Fix the two pieces of wooden blocks on the clamp so that the distance L between the wooden blocks and the floor is **140cm** as shown in the figure below.

(THIS DISTANCE SHOULD REMAIN FIXED THROUGHOUT THE EXPERIMENT)

- b) Tie one end of the wire firmly to the hook of provided mass and fix the other end between the two wooden blocks.
- c) Adjust the length of the wire such that the distance, **L** is **1.2m**.
- d) Give the mass a slight twist in a horizontal plane (about one turn) so that when released it oscillates about its center. Measure the time taken for **10 oscillations.**


©2022 NYAHOKAKIRA CLUSTER 3 Physics 232/3 (Practical)

e) Repeat the procedure in d) above for other values of **L** as indicted in table 1. (6mks)

Table. 1

Length L(m)	1.1	1.0	0.9	0.8	0.7	0.6
d=1.4-L						
Time for 10 oscillations, t,(s)						
Period, T,(s)						
T ² ,(S ²)						

f) Plot the graph of **T**² (s²)against reduced distance **d** (m), (5mks)

g)	Determine slope, G, of your graph	(2mks)
h)	Given that;	
	$\mathit{T}^2 = -rac{39.478d}{n} + \mathit{W}$, where W and n are constant,	
((i) Determine the value of n	(3mks)
(ii) Given that, $w=rac{39.478L}{n}$, determine the value of L	(2mks)

2. QUESTION TWO

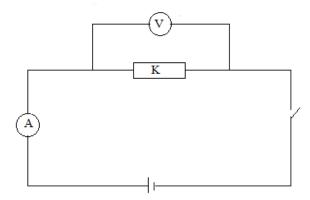
PART A.

You are provided with;

- Voltmeter
- Ammeter
- Nichrome wire labeled K (10cm long gauge32)
- One cell and cell holder.
- A switch
- Micrometer screw gauge(shared)

Procedure:

a) Measure;


i) The diameter of the wire K using the micrometer screw gauge. (1mk)

d =m

ii) The length of the wire K

$$L = \dots m$$
 (1mk)

Set up the apparatus as shown in the figure below.

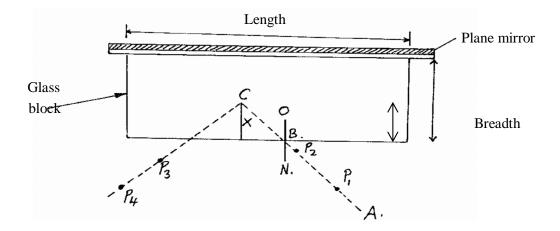
i) Record the voltmeter reading when the switch open,

$$\mathbf{V_0} = \dots$$
 (1mk)

ii) With the switch closed, complete the table below for the values of the current passing through K and the pd across it.

$$I = \dots (1mk)$$

$$\mathbf{V} = \dots (1 \text{mk})$$


iii)	Determine the internal i	Determine the internal resistance, ${\bf r}$					
	given that;	$\mathbf{V} = \mathbf{V} + \mathbf{Ir}$	(2mks)				
iv)	Use the recorded values	of I and V to determine the conductance, G of the v	wire. (2mks)				
			• • • • • • • • • • • • • • • • • • • •				
v)	Given that; $L=rac{\pi d^2}{4 ho G}$	determine the value of $ ho.$	(3mks)				
			• • • • • • • • • • • • • • • • • • • •				
			••••				

PART B

- a) You are provided with the following apparatus
- a glass block (10.2 x 6.5 x 1.8)cm
- a plane mirror (10 x 10)cm
- 4 optical pins
- a soft board
- A cellotape (about 15cm long)
- 2 white plain sheets of paper
- a ruler or half metre rule
- a protractor
- 4 office pins

Proceed as follows:-

(i) Using the cello tape provided fix the plane mirror to the glass block alongside as shown in the figure below. The reflecting surface to face the glass block.

- (ii) With the use of the office pins, secure firmly a white plain paper on the board and place the block together with attached mirror.
- (iii) Draw the outline of the glass block together with the mirror

- (iv) Remove the block and the mirror and draw a normal at **B** somewhere **a quarter- way**the length of the outline you drew in (iii) above.
- (v) Draw four (4) different rays \mathbf{AB} incident at \mathbf{B} and extended to \mathbf{C} . The incident rays should make angles 10° , 20° , 30° , and 40° .
- (vi) Replace the glass block together with the attached mirror so as exactly fit the outline in(iii)
- (vii) Place two object pins P_1 and P_2 along the 10^0 line. Locate the images of pins P_1 and P_2 as they appear by non-parallax (the images of the pins appear to be in a straight line when viewed through the glass block).

Place pins P_3 and P_4 so that the images of pins P_1 and P_2 are not seen.

(viii) Remove the glass block together with the attached mirror from the outline and produce the lines joining P_1 to P_2 and P_3 to P_4 so that they intersect at C.

Measure and record the distance, \mathbf{x} in the table 2 below.

NB. It may be necessary for you to draw another outline so as to avoid congestion of (construction) lines.

Angle i ⁰	10	20	30	40
Distance, x(cm)				
Distance, x(m)				

Table 2		(3mks)
(ix)	Now measure the breadth, b of the glass block.	(1mk)
	b =	

(x)	Calculate the average $\mathbf{A}_{\mathbf{x}}$ of the values of \mathbf{x} in table 3 above	(2mks)
(xi)	Determine the refractive index of the glass block using the formula.	
	Refractive index of glass $n=rac{b}{A_{x}}$	(2 marks)

THIS IS THE LAST PRINTED PAGE