Name MARKING SCHEM	Index No
	Candidate's signature
232/3 PHYSICS PRACTICAL Paper 3 JUNE-2022 2	Date

MUMIAS WEST SUB-COUNTY EXAM

Kenya Certificate of Secondary Education (K.C.S.E)
PHYSICS
(PRACTICAL)
Paper 3

Instructions to Candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the space provided above.
- (c) Answer all questions on the question paper.
- (d) You are supposed to spend the first 15 minutes allowed for this paper reading the whole paper carefully before commencing your work and confirming your apparatus.
- (e) Marks are given for a clear record of the observations actually made, their suitability, accuracy and for the use made of them.)
- (f) Candidates are advised to record observations as soon as they are made
- (g) Mathematical tables and Electronic calculators may be used
- (h) Candidates should answer the questions in English

For Examiner's Use Only

Question	Maximum	Candidates Score		
1				
	20			
2				
	20			
	Total			

Question 1

You are provided with the following:

- a voltmeter
- two new dry cells and a cell holder
- a switch
- a resistor labeled R (4Ω)
- a wire mounted on a mm scale and labeled G.
- a micrometer screw gauge (to be shared)
- six connecting wires with six crocodile clips

Proceed as follows

a. i) Record the length L₀ of the wire labeled G

$$L_0 = 80.0 \text{ Cm}$$
 (1 dP (1 mk)

Use the micrometer screw gauge provided to measure the diameter of the wire labeled G at two different points and determine the average diameter, d.

The diameter $d_1 = 0.30 \pm 0.02$ mm, $d_2 = 0.30 \pm 0.02$ mm (1mk)

Average diameter
$$d = \frac{0.30 + 0.30}{2} = 0.30$$
 (1mk)

iii) Determine the radius r of the wire in metres.

Set up the apparatus as shown in the circuit diagram in the figure below. b.

i. Use the voltmeter provided to measure the p.d V_R across R and the p.d, V_G across G when the switch is closed.

$$V_R = 1.70$$
 Volts (1/2 mk)

$$V_G = 1.36$$
 Volts (1/2 mk)

Open the switch

ii. Use the value of R provided and the value of V_R in b (i) above to determine the current I flowing through R when the switch was closed.

$$I = \frac{4}{2} - \frac{1.7}{10} = 0.17$$
 Amperes (1mk)

iii. Determine the constant H given that

$$H = \frac{100V_G}{IxL_0}$$

$$H = \frac{(00 \times 1.30)}{-0.17 \times 0.80} = 955.88 \, \Omega \text{m}^{-1}$$
 (1mk)

c. Connect the voltmeter across R as shown in the figure below.

Adjust the position of one crocodile clip on the wire G to a point such that the length

L of the wire in the circuit is 5cm (see the figure above). Close the switch. Read and record in the table 2 the value for the p.d across R. Open the switch.

d. Repeat the procedure in (c) above for the other values of L shown in table 2. (3mks)

Table 2

Distance L (cm)	0	5	10	20	30	40	60	70
p.d V across								
R (V)	2.35	2-20	2.00	1.90	1.70	1.60	1.45	1.30

e On the grid provided plot the graph of V (y-axis) against L (5mks)

From the graph determine L_1 , the value of L when $V = V_0$ where V_0 is the p.d (ii)

when L = 0(1mk)

$$\frac{16}{2} = \frac{2.60}{2} = 1.3$$

f. Determine the constant D for the wire given that

(2mks)

$$D = R X 300$$

$$L_1 V_0$$

= 300012 70+26 16.48 54/cmN Accept 4 Metres used

Determine the constant p given that g.

Or 1648 52/m

$$p = \pi r^2$$
 (D + H) where **r** is the radius of the wire in metres. (2 mks)

$$P = \frac{22}{7} \times \frac{0.0015^{2}}{2} \left(1648 + 955.88 \right)$$

$$= 9.2066 \times 10^{-3}$$

QUESTION 2

You are provided with the following apparatus:

- clamp
- boss
- stand
- optical pin
- copper wire (15 cm long)
- protractor
- two pieces of plasticine of about 0.5cm diameter
- cork
- (a) Set up the apparatus as shown in the diagram below

- (b) Bend the wire in the middle so as to make an angle of 50°. Attach the two small pieces of plasticine at both ends of the bent wire as shown in the diagram.
- (c) Place the bent wire on the optical pin and give a small horizontal displacement. Take the time for 10 complete oscillations and record in the table below.
- (d) Repeat the procedure above for other values of θ and complete the table below.

(9mks)

Angle θ^0	Time't'for10oscillations (s)	Period T (s)	Frequency f (Hz)	$f^2 (Hz)^2$	$\cos\left(\frac{\theta}{2}\right)$
50 60	5.53	0.553	1-8683	3:2700	
70	5.90	0.590	1.6949	2.8727	0 000
80	6.06	0:606	1.6562	2.723	0-8192
90	7.31	0.663	1-3680	2-2750	
100	7.65	0.765	1.3072	1.7085	0.7071

(i) On the graph paper provided, pot a graph of f^2 (y-axis) against $\cos \frac{\theta}{2}$ (5mks)

Determine the gradient 'S' of the graph
$$S = 4 + \frac{2}{4} + \frac{2}{4} = \frac{2 \cdot 5 - 1 \cdot 75}{6 \cdot 8 - 0 \cdot 68} = \frac{0 \cdot 75}{0 \cdot 12} = 6 \cdot 25 \text{ Hz}$$
(ii) The arm to See the graph

The equation for the oscillation of the wire is given by the formula: (ii)

$$f^2 = \frac{150}{4 \prod^2 L} Z \cos\left(\frac{\theta}{2}\right)$$

Given that L = 0.15m, use the gradient of the graph to determine the value of Z.

$$\frac{50}{41120.15} = 6.25$$

$$Z = 6.25 \times 4112 \times 0.5$$

$$150$$

$$= 0.2467$$