LANJET EVALUATION 2022
 PHYSICS PP1 (MS) 232 / 1

QN 1. $\mathrm{V}=\frac{m}{\rho}=\frac{13.6}{1.25}=10.88 \mathrm{~cm}^{3} . \checkmark 1$
New reading $=20.5+10.88=31.38 \mathrm{~cm}^{3} \checkmark 1$

QN 2. Resultant force

$$
\begin{aligned}
& \mathrm{F}=\text { Reaction }- \text { weight } \checkmark 1 \\
& \mathrm{~F}+\mathrm{W}=\mathrm{R} \\
& R=m a+m g \checkmark 1=m(a+g) \\
& \quad=60 \mathrm{~kg}\left(10 \mathrm{~ms}^{-2}+3 \mathrm{~ms}^{-2}\right)=780 \mathrm{~N} \checkmark 1
\end{aligned}
$$

QN 3. a) - be incompressible \checkmark

- Not corrosive \checkmark
- Have low freezing point and high boiling point
b) The force applied on the foot pedal exerts pressure on the master cylinder \checkmark 1.The pressure is Transmitted by the brake fluid to the slave cylinder $\checkmark 1$. This causes the slave cylinder to open the brake shoe and hence the brake lining presses the drum $\checkmark 1$. The rotation of the wheel is thus resisted.

QN 4. a) \quad V.R $=6 \checkmark 1$
b) \quad M.A $=\underline{800} 272=\underline{2.941} \checkmark 1$

$$
\mathrm{E}=\frac{\mathrm{M} \cdot \mathrm{~A}}{\mathrm{~V} \cdot \mathrm{R}} \times 100 \%=\underline{2.941} \times 100 \checkmark 1=\underline{49.017} \% \checkmark 1
$$

QN 5. The motion of the particles increase $\checkmark 1$
QN 6.

Clockwise moments $=\mathrm{W} \times 0.5 \mathrm{~m}$
Anticlockwise moment $=\mathrm{Fx} 0.65 \mathrm{~m}$

$$
\begin{aligned}
& \text { W x } 0.5=\mathrm{F} \times 0.65 \\
& \frac{200 \times 100.5=\mathrm{F} \times 0.6}{1000} \\
& \frac{1}{0.6}=\mathrm{F} \times \frac{0.6}{0.6}
\end{aligned}
$$

$$
F=\frac{10}{6}=1.67 \mathrm{~N}
$$

QN7. - Its density reduces $\checkmark 1$

- Because during expansion the volume increases and its mass remains constant.

QN 8 - A $\checkmark 1$

- In B some heat will be required to melt the ice hence the temperature will be slightly lower. \checkmark

QN 10. Pressure applied at one point of a liquid is transmitted equally to all other parts of enclosed liquid $\checkmark 1$
QN 11. $\quad \mathrm{K} . \mathrm{E}=1 / 2 \mathrm{MV}^{2}$

$$
=1 / 2 \times 920 \times 30^{2} \checkmark 1=414000 \mathrm{~J} \checkmark 1
$$

QN12. Because the horizontal force acting on the bullet is zero. $\checkmark 1$ SECTION B (55 MARKS)
QN 13. (a) i)- A, has higher viscosity. $\checkmark 1$

- Because in fluid A a lower terminal velocity is registered due to the higher resistance of the fluid molecules to the movement of the sphere through it. $\checkmark 1$
ii)

b) (i)

$$
\begin{aligned}
\mathrm{A}_{1} \mathrm{~V}_{1} & =\mathrm{A}_{2} \mathrm{~V}_{2} \checkmark 1 \\
100 \times 2 & =60 \mathrm{~V}_{2} \checkmark \\
\mathrm{~V}_{2} & =\frac{200}{60}=3.33 \mathrm{~m} / \mathrm{s} \checkmark 1
\end{aligned}
$$

(ii) - Liquid is non-viscous $\checkmark 1$

- Liquid is incompressible $\checkmark 1$
(iii) - As the ball rises, the atmospheric pressure on the ball reduces. $\checkmark 1$
- At higher altitude the pressure outside is relatively lower, thus the pressure inside the balloon exceeds the one outside causing it to become fully inflated. $\checkmark 1$

QN 14. a) The pressure of a fixed mass of a gas is inversely proportional to its volume, provided the temperature is kept constant. $\checkmark 1$
b) (i)

$\frac{1}{1} \times 10^{-2}(\mathrm{~mm})-$	$\checkmark 1 / 2$							
L	2.44	3.33	3.64	4.55	5.56	6.25	8.00	9.10

(ii) Check graph paper
(iii) Pressure of the air column when the length, L of air is zero
$\mathrm{P}=0$ atmospheres $\checkmark 1$

QN 15. (a) When a body is partially or totally immersed in a fluid, it experiences an upthrust equal to the weight of fluids displaced.
(b)

(i) $\delta=\mathrm{m} / \mathrm{v}$ Density of block
$\mathrm{M}=\delta \mathrm{x} v$ mass of block \quad volume $=9 \times 15=135 \mathrm{~cm}^{3}$

$$
=1.25 \times 135=168.75 \mathrm{~g}=0.16875 \mathrm{~kg}
$$

(ii) Reading - weight of oil displaced

Mass of oil displace $=135 \times 0.8=108 \mathrm{~g}=0.108 \mathrm{~kg}$
Weight of oil displaced $=0.108 \times 10=1.08 \mathrm{~N}$
Weight $=$ in oil $=$ weight in air - up thrust

$$
=1.6875-1.08=0.6075 \mathrm{~N}
$$

(iii) Up thrust = weight of oil displaced

Mass of oil displaced $=67.5 \times 0.8=54 \mathrm{~g}=0.054 \mathrm{~kg}$
Weight of oil displaced $=0.04 \times 10=0.54 \mathrm{~N}$
Reading of balance $=1.6875-0.54 \mathrm{~N}$

$$
=1.1475 \mathrm{~N}
$$

(c) Tie an object with a string and suspend it on a s[ring balance

Use a Eureka can to check the amount of water displaced y an object when fully immersed in water.
Compare the weight of water displaced and the apparent loss in weight (weight in air - weight in water).

QN 16. a) The quantity of heat required to change the state of a given mass of substance without change in Temperature. $\checkmark 1$
b) (i) Because of the hanging weights, the wire exerts pressure on the ice beneath $\checkmark 1$ it and therefore makes it melt at a temperature lower that its melting point. $\checkmark 1$. Once the ice has melted, the water formed flows over the wire and immediately solidifies since it is no longer under pressure $\checkmark 1$

As it solidifies, the latent heat of fusion is released and conducted by the copper wire to melt the ice below the wire $\checkmark 1$. The process continues until the wire cuts through leaving the block intact $\checkmark 1$.
(ii) The cotton thread would not cut through the ice at all $\checkmark 1$. This is because cotton is a poor conductor of heat $\checkmark 1$ hence it would not conduct the latent heat of fusion released by the Solidifying ice to melt the ice below.
c) (i) Heat lost by hot water = Heat gained by cold water

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{h}} \mathrm{C} \Delta \ominus=\mathrm{McC} \Delta \ominus_{2} \quad \checkmark 1 \\
& 3(\ominus-20)=9(20-10) \quad \checkmark 1 \\
& \ominus-20=30 \\
& \ominus=50^{\circ} \mathrm{C} \checkmark 1 \\
& \text { d) } \quad \mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}} \quad \checkmark 1 \\
& \mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{P}}=\frac{240 \times 240 \mathrm{~V}}{90 \mathrm{w}} \checkmark 1 \\
& =640 \Omega \checkmark 1
\end{aligned}
$$

QN 17 (a) (i) Tension in the spring supporting the object. \checkmark^{1}
(ii) There is change in the direction of instantaneous velocity at various points along the circular path. \checkmark^{1}
(b) (i) The spring balance reading increases. $\checkmark 1$
(ii).The object moves tangentially to the circular path at that point where it cuts. \checkmark 1
(c) Reading of spring balance $=$ Centripetal force

$$
\begin{aligned}
= & \frac{M V^{2}}{V} \checkmark 1 \\
81 & =\frac{0.5 \times V^{2}}{0.5} \\
V^{2} & =81 \\
\mathrm{~V} & =9 \mathrm{~ms}^{-1}
\end{aligned}
$$

(d) (i) The factors are:

(ii) Oil reduces friction ${ }^{1}$ force since friction provides centripetal force the frequency for sliding of is lowered. ${ }^{1}$

