MARANDA HIGH SCHOOL

Kenya Certificate of Secondary Education MOCK MARKING SCHEME

121/1

Paper 1
September 2022 - TIME $2 \frac{1}{2}$ Hours

	WORKING		COMMENTS
1	$\begin{gathered} \frac{0.01}{100} \text { of }\left[\frac{\frac{4+6-3}{8}}{\frac{180-5-16}{40}}\right] \\ =\frac{1}{10000} \text { of }\left[\frac{\frac{7}{8}}{\frac{159}{40}}\right] \\ \frac{1}{=10000}\left[\frac{7}{8} \times \frac{40}{159}\right] \\ =\frac{7}{200 \times 159} \\ =\frac{7}{31800} \end{gathered}$	M1 M1 M1 A1	$\sqrt{ }$ Resolving the numerator $\sqrt{ }$ Resolving the denominator and using its reciprocal Vone operation remaing in the denominator $\sqrt{ }$ C.A.O
		04	
2	$\begin{gathered} \begin{array}{c} \text { M: C: A }=2 \mathrm{x}: 3 \mathrm{x}: 1.5 \mathrm{x} \\ \mathrm{x}=\frac{65}{13} \\ \mathrm{x}=5 \end{array} \\ \text { Mike'sAge }=30 \text { years } \\ \text { Charles Age }=20 \text { years } \\ \text { Abdul'sAge }=15 \text { years } \end{gathered}$	M1 M1 A1	$\mathrm{M}: \mathrm{C}: \mathrm{A}=4 \mathrm{x}: 6 \mathrm{x}: 3 \mathrm{x}$ $\sqrt{ }$ Attempt to solve for x \checkmark Ages
		03	
3	$\begin{gathered} 18=2 \times 3^{2} \\ 30=2 \times 3 \times 5 \\ 54=2 \times 3^{3} \end{gathered}$		

	$\begin{aligned} \text { GCD } & =2 \times 3 \\ & =6 \\ \text { No of rows } & =\frac{18}{6}+\frac{30}{6}+\frac{54}{6} \\ & =17 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\sqrt{ } \text { GCD }$ $\sqrt{ }$ Expression on number of rows VC.A.O
		03	
4	$\begin{gathered} 2 x+6=x+8 \\ x=2 \\ L=21 \text { and } W=10 \\ A=21 \times 10 \\ =210 \end{gathered}$	M1 M1 A1	$\sqrt{ }$ Attempt to solve for x $\sqrt{ }$ Expression for area of the rectangle VC.A.O
		03	
5	$\begin{gathered} \frac{4}{\mathrm{P}^{2}}=(221-220)(221+220) \\ \frac{1}{\mathrm{P}^{2}}=\frac{441}{4} \\ \frac{1}{\mathrm{P}}= \pm \frac{21}{2} \\ \mathrm{P}= \pm \frac{2}{21} \end{gathered}$	M1 M1 A1	Vifference of two squares $\sqrt{ }$ Squareeoots. Deny if only one solution $\sqrt{ }$ Reciprocals
	\square	03	
6	$\begin{gathered} \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OB}} \\ =-\binom{\mathrm{x}}{4}+\binom{5}{7} \\ =\binom{5-\mathrm{x}}{3} \\ \sqrt{(5-\mathrm{x})^{2}+3^{2}}=5^{2} \\ (5-\mathrm{x})^{2}=16 \\ 5-\mathrm{x}= \pm 4 \\ \mathrm{x}=1 \text { or } 9 \end{gathered}$	M1 M1 A1	$\sqrt{ }$ Expression of vector $A B$ $\sqrt{ }$ Equation of the magnitude $\sqrt{ }$ Both answers
		03	
7	$\begin{gathered} 2 \mathrm{k}+10+3 \mathrm{k}-20=90^{\circ} \\ \mathrm{k}=20^{\circ} \end{gathered}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	$\sqrt{ }$ Expression $\sqrt{ } \mathrm{C} . \mathrm{A} . \mathrm{O}$

		02	
8	$\begin{gathered} \sqrt{-2 x-6}=3+x \\ -2 x-6=x^{2}+6 x+9 \\ x^{2}+8 x+15=0 \\ x=\frac{-8 \pm \sqrt{64-60}}{2} \\ x=\frac{-8 \pm 2}{2} \\ x=-5 \text { or }-3 \end{gathered}$	M1 M1 A1	$\sqrt{ }$ Squareroots on both sides $\sqrt{ }$ Factorization/resolving of the discriminant $\sqrt{ }$ Roots
		03	
9		B1 B1 B1	$\sqrt{ }$ Drawing of Sides AF, FE and EC $\sqrt{ }$ Drawing of Sides AD, DE and DC $\sqrt{ }$ Labeling of the solid
		03	
10	$\begin{aligned} \text { M. P } & =\frac{1440 \times 100}{90} \\ & =1600 \\ \text { S. P } & =\frac{1440 \times 100}{120} \\ & =1200 \\ \text { Profit } & =1600-1200 \\ & =400 \end{aligned}$	M1 M1 A1	$\sqrt{ }$ Expression for the Marked Price \checkmark Expression for the Selling Price $\sqrt{ }$ Profit
		03	
11	$\begin{aligned} \mathrm{BD} & =\sqrt{10^{2}+10^{2}} \\ & =11.662 \\ \sin \mathrm{CDB} & =\frac{5}{11.662} \\ & =28.209^{\circ} \end{aligned}$	M1	$\sqrt{ }$ Use of Pythagorean $\sqrt{ }$ Use of any trigonometric ratios C.A.O

		03	
12	$\begin{gathered} \log 0.045=\log \left(3^{2} \times 5 \times 10^{-3}\right) \\ =2 \log 3+\log 5+\log 10^{-3} \\ =2 \times 0.4771+0.6990+\overline{3} \\ =\overline{2} .6532 \end{gathered}$	M1 M1 A1	$\begin{aligned} & \log \left(3^{2} \times 5 \times 10^{-3}\right) \\ & =2 \log 3+\log 5-3 \log 10 \\ & =2 \times 0.4771+0.6990-3 \\ & =-1.3468 \end{aligned}$
		03	
13	The distance covered by the car by 9: $30 \mathrm{am}=1.5 \mathrm{x} \mathrm{km}$ Remaining distance $=810-1.5 \mathrm{x}$ $\begin{aligned} & \frac{810-1.5 x}{x+84}=1.5 \\ & 810-1.5 x=1.5 x+126 \\ & x=228 \end{aligned}$	M1 M1 M1 A1	$\sqrt{ }$ Expression of the remaining distance to be covered \checkmark Equation of expressions of time $\sqrt{ } 1620-3 \mathrm{x}=3 \mathrm{x}+252$ \checkmark C.A.O
	-	04	
14	$\begin{aligned} \angle \mathrm{OAC} & =\angle \mathrm{OCA}=70^{\circ} \text { and } \angle \mathrm{OAB}=10^{\circ} \\ \angle \mathrm{CAB} & =70^{\circ}+10^{\circ} \\ & =80^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\sqrt{ }$ Angles $\sqrt{ }$ Expression for $<\mathrm{CAB}$ $\sqrt{ }$ C.A.O
		03	
15	x -1.5 -0.5 0.5 1.5 2.5 3.5 y 10.75 8.75 12.75 22.75 38.75 60.75$\begin{aligned} \mathrm{A}= & 1(10.75+8.75+12.75+22.75+38.75+60.75) \\ & =154.5 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \mathrm{M} 1 \\ \mathrm{~A} 1 \end{array}$	\sqrt{x} values $\sqrt{ } \mathrm{y}$ values $\sqrt{ }$ Substitution into the formula VC.A.O
		04	
16		B1 B1 B1	$\sqrt{ }$ Location of A^{\prime} and B^{\prime} $\sqrt{ }$ Location of C^{\prime} and D^{\prime} $\sqrt{ }$ Completion of the image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$

		03	
17	$\begin{aligned} & \text { a) } 3 y=-2 x-6 \\ & y=-\frac{2}{3} x-2 \\ & m_{1}=-\frac{2}{3} \\ & \text { b) }-\frac{2}{3} \times m_{2}=-1 \\ & m_{2}=1.5 \\ & \frac{y-2}{x-7}=1.5 \\ & \begin{array}{l} y=1.5 x-8.5 \\ \text { c) At } Q-\frac{2}{3} x-2=1.5 x-8.5 \\ x=3 \\ y=-\frac{2}{3} \times 3-2 \\ =-4 \end{array} \end{aligned}$ hence the co - ordinates of is $Q(3,-4)$ $\begin{aligned} & \text { d) } m_{3}=-\frac{2}{3} \\ & \frac{y-2}{x-7}=-\frac{2}{3} \\ & 2 x+3 y=20 \end{aligned}$ e) y intercept is $6 \frac{2}{3}$ and x intercept is 10	B1 B1 M1 A1 M1 M1 A1 M1 A1 B1	$\sqrt{ }$ Gradient. Deny 0.6667 $\sqrt{\text { Gradient. Accept } \frac{3}{2}}$ seen $\sqrt{ }$ Attempt to get equation of the line $\sqrt{ }$ Equation. Accept $y=1 \frac{1}{2} x-8 \frac{1}{2}$ $\sqrt{ }$ Attempt to get x ordianate of Q $\sqrt{ }$ Attempt to get y ordianate of Q \checkmark Coordianates of Q $\sqrt{ }$ Attempt to get equation of the line $\sqrt{ }$ Equation \checkmark Intercepts
		10	
18	a) i) $\frac{90000}{x}$ ii) $\frac{90000}{x-50}$ b) $\begin{aligned} & \frac{90000}{x-50}-\frac{90000}{x}=600 \\ & 600 x^{2}-30,000 x-45,000,000=0 \end{aligned}$	B1 B1 M1 M1	$\sqrt{ }$ Expression $\sqrt{ }$ Expression $\sqrt{ }$ Equation $\sqrt{ }$ Quadratic Equation in the form $a x^{2}+b x+c=0$

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\mathrm{x}= \& \frac{50 \pm \sqrt{2500+300,000}}{2} \\
\& =\frac{50 \pm 550}{2} \\
\& =300 \text { or }-250 \\
\therefore \& x=300
\end{aligned}
\]
\[
\begin{aligned}
\& \text { c) } \begin{array}{l}
\text { Original contribution }=\frac{900,000}{300} \\
\\
=3000
\end{array} \\
\& \begin{aligned}
\% \text { Change } \& =\frac{600}{3000} \times 100 \% \\
\& =20 \%
\end{aligned}
\end{aligned}
\] \\
d) Remaining students=250
\[
\begin{aligned}
\text { Boys contributions } \& =130 \times 3600 \\
\& =468,000
\end{aligned}
\]
\end{tabular} \& M1
A1
M1

A1
M1

A1 \& | $\sqrt{ }$ Resolution of the discriminant/Factorisation |
| :--- |
| \checkmark Discrimination of the roots $\sqrt{ }$ Expression for each students contribution |
| $\sqrt{ }$ Percentage |
| $\sqrt{ }$ Expression of boys contribution , CAO |

\hline \& \& 10 \&

\hline 19 \& | a) $\frac{1}{2} \mathrm{AB}=3.5^{2}-\mathrm{x}^{2}$ also $\frac{1}{2} \mathrm{AB}=4.2^{2}-(6-\mathrm{x})^{2}$ |
| :--- |
| hence $3.5^{2}-x^{2}=4.2^{2}-(6-x)^{2}$ |
| $12 x=36+3.5^{2}-4.2^{2}$ $\therefore x=2.551 \mathrm{~cm}$ |
| b) $\begin{aligned} & \cos <\frac{1}{2} \mathrm{~A} 01 \mathrm{~B}= \frac{2.551}{3.5} \\ & \therefore<\mathrm{A} 01 \mathrm{~B}=86^{\circ} \\ & \cos <\frac{1}{2} \mathrm{~A} 02 \mathrm{~B}=\frac{3.449}{4.2} \\ & \therefore<\mathrm{A} 02 \mathrm{~B}=70^{\circ} \end{aligned}$ |
| c) Area of $01 \mathrm{AO} 2 \mathrm{~B}=\frac{1}{2} 3.5^{2} \sin 86^{\circ}+\frac{1}{2} 4.2^{2} \sin 70^{\circ}$ $=14.40$ |
| d) Area of the shaded region $\begin{aligned} & =14.40-\frac{86^{\circ}}{360^{\circ}} \times 3.142 \times 3.5^{2} \\ & =5.8 \end{aligned}$ | \& M1

M1
A1
M1
A1
B1
M1
A1
A
M1

A1 \& | VExpressions AB |
| :--- |
| $\sqrt{ }$ Equation of the perpendicular height $\sqrt{ }$ C.A.O |
| $\sqrt{ }$ Attempt to get AO1B |
| VAO1B |
| $\sqrt{ }$ AO2B |
| $\sqrt{ }$ Attempt to get Area of O1AO2B |
| $\sqrt{ }$ C.A.O |
| $\sqrt{ }$ Attempt to get Area of the shaded $\sqrt{ }$ C.A.O |

\hline \& \& 10 \&

\hline
\end{tabular}

20 a) Scale Diagram

21	a) $\begin{aligned} \mathrm{h} & =7+\sqrt{25^{2}-7^{2}} \\ & =31 \mathrm{~cm} \end{aligned}$ b) $\begin{aligned} & \mathrm{V}=\frac{1}{3} \times \frac{22}{7} \times 7^{2} \times 24+\frac{2}{3} \times \frac{22}{7} \times 7^{3} \\ & =1950 \frac{2}{3} \end{aligned}$ c) $\begin{aligned} & \text { S.A }=2 \times \frac{22}{7} \times 7^{2}+\frac{22}{7} \times 7 \times 2 \\ & =858 \end{aligned}$ d) $\begin{aligned} \mathrm{m} & =12.5 \times 1950 \frac{2}{3} \\ & =24383 \frac{1}{3} \mathrm{~g} \end{aligned}$	M1 A1 M1 M1 A1 M1 M1 A1 M1 A1	$\sqrt{ }$ Expression of height 7+24 $\sqrt{ }$ C.A.O $\sqrt{ }$ Expression of vol. of the hemisphere $\sqrt{ }$ Expression of vol. of the cone $\sqrt{ }$ C.A.O $\sqrt{ }$ Expression of curved S.A of the h / s VExpression of curved S.A of cone $\sqrt{ }$ C.A.O $\sqrt{ }$ Expression of the mass VC.A.O
		10	
22	a) i. $\overrightarrow{\mathrm{AB}}=-a+\underset{\sim}{b}$ ii. $\overrightarrow{\mathrm{CD}}=\frac{1}{3} \underset{\sim}{a}-3 \underset{\sim}{b}$ b) $\begin{aligned} & \overrightarrow{\mathrm{CM}}=\mathrm{k}\left(\frac{1}{3} \underset{\sim}{a}-3 \underset{\sim}{b}\right) \\ & \overrightarrow{\mathrm{AM}}=h(\underset{\sim}{a}+\underset{\sim}{a}) \\ & \overrightarrow{\mathrm{AM}}=-\underset{\sim}{a}+3 \underset{\sim}{b}+\mathrm{k}\left({\underset{\sim}{3}}_{3}^{1} \underset{\sim}{a}-3 \underset{\sim}{b}\right) \\ & \therefore \overrightarrow{\mathrm{AM}}=\left(-1+\frac{1}{3} k\right) \underset{\sim}{a}+(3-3 k) \underset{\sim}{b} \\ & \therefore-\underset{\sim}{h}+\underset{\sim}{b}=\left(-1+\frac{1}{3} k\right) \underset{\sim}{a}+(3-3 k) \underset{\sim}{b} \end{aligned}$ Comparing the coefecients: $\begin{aligned} & -1+\frac{1}{3} k=-h \\ & 3-3 k=h \end{aligned}$ Hence $-1+\frac{1}{3} k=-3+3 k$ $k=\frac{3}{4}$ and $h=\frac{3}{4}$	B1 ${ }^{\text {B1 }}$	$\sqrt{ }$ vector $A B$ $\sqrt{ }$ vector $C D$ $\sqrt{ }$ Expression of vector AM $\sqrt{ }$ Equation of the expressions of vector AM or any other $\sqrt{ }$ Formation of the simultaneous equations in k and h \checkmark Attempt to solve for either k or h $\sqrt{ }$ C.A.O for both k and h

