MUMIAS WEST JOINT EVALUATION - 2022 CHEMISTRY PP3 MARKING SCHEME

Table I-6 MARKS

Volume of water in the boiling tube $\left(\mathbf{c m}^{\mathbf{3}}\right)$	Temperature at which crystals of solid P first appear $\left({ }^{\mathbf{0}} \mathbf{C}\right)$	Solubility of solid P $(\mathbf{g} / \mathbf{1 0 0 g})$ of water
4	68.0	112.5
6	64.0	75.0
8	62.0	56.25
10	50.0	45.0
12	48.0	37.5

DISTRIBUTED AS FOLLOWS:

COLUMN 2-4MARKS

IA) COMPLETE TABLE - 2 MARKS (Applicable to column 2 on temperature readings only)

- Award $1 / 2$ mark for each temperature reading to a maximum to 2 marks

Penalties

- Penalize $1 / 2$ mark for the unrealistic values (above $100^{\circ} \mathrm{c}$ or below $20^{\circ} \mathrm{C}$)
B) DECIMAL - $1 / 2$ Mark (Applicable only to column 2)
- Award $1 / 2$ mark for temperatures consistently recorded to whole numbers or 1dp (. 0 or .5) otherwise award 0 mark.
C) ACCURACY - $1 / 2$ Mark (Tied to the reading on column 2 row 1)
- Award $1 / 2$ mark for the candidate's within the range of ± 2 units of the school value otherwise award Omark.

D) TREND - 1mark (Tied to temperature readings only)

- Award 1 mark for continuous decrease in temperature otherwise, award Omark.

COLUMN 3-2MARKS

- Award $1 / 2$ mark for each correct calculation of solubility to maximum of 2 marks

Conditions and Penalties

- Penalize $1 / 2$ mark ONCE for any value rounded off to whole number.
- Penalize $1 / 2$ mark for any missing or wrong value of solubility

1|Page
A) Axes - $1 / 2$ mark

Conditions

- Award $1 / 2$ mark if all axes are correctly labeled
- Units may be included or not. If units are included must be correct, otherwise award Omark for axes
B) SCALE - $1 / 2$ mark
- Correctly plotted points MUST cover $3 / 4$ of the grid provided for $1 / 2$ mark
- The scale MUST be linear in both axes otherwise award 0 mark for the wrong scale.
C) PLOTTIING - 1 MARK
- All 5 points plotted correctly1mark
- 3-4 points plotted correctly 1/2 mark
- 1-2 points plotted Omark

NOTE

Award 0 mark for points plotted on a wrong scale.
D) CURVE - IMARK

- Award 1 mark for a curve showing continuous increase in solubility with increasing temperature.
- Award 0 mark for use of a straight line.

ii) - Award 1mark for the correct reading from a correct graph

- \quad The student to give the temperature when solubility is $100 \mathrm{~g} / 100 \mathrm{~g}$ of water.

Conditions

- Award $1 / 2$ mark for correct showing and $1 / 2$ mark for correct reading
- If the candidate has not shown on the graph, but correct reading is given, award 1mark
- If the candidate shows but does not give the correct reading, award $1 / 2$ mark.
iii) The candidate to give the solubility when the temperature is $55^{\circ} \mathrm{c}$ for $\mathbf{1 m a r k}$.
- Award $1 / 2$ mark for correct showing and $1 / 2$ mark for correct reading
- If the candidate has not shown on the graph, but correct reading is given, award 1mark
- If the candidate shows but does not give the correct reading, award $1 / 2$ mark.

TABLE II - 5MARKS

Titre number	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$	17.5	17.5	17.5
Initial burette reading $\left(\mathrm{cm}^{3}\right)$	0.0	0.0	0.0
Vol. of soln. P used cm^{3}	17.5	17.5	17.5

Marking points

A) Complete table (CT) \qquad 1mark

The table should be completed.
Penalize $1 / 2$ mark for the following errors if any occurs.

- Arithmetic error in subtraction.
- - Values recorded beyond 50cm3
- - Inversion of table
- Penalize $1 / 2$ mk only on any one of these errors.
B) Decimal point (d.p). \qquad $.1 m k$
- All values to be recorded to 1d.p or
- All values to be recorded to $2 d p$ second decimal value being 0 or 5 only
- Award 0-mark if whole numbers used or more than 3dp are used or inconsistency in the number of d.p
C) Accuracy mark (AC). 1mark
- Consider any one candidates' titre if within $\pm 0.10 \mathrm{~cm}^{3}$ of school value award $1 m k$.
- If it is ± 0.11 to 0.20 award $1 / 2$ mark. If beyond $0.20 \mathrm{~cm}^{3}$ award $0 m k$

D) Principle of Averaging (P.A).

- Three titres to be averaged if within $\pm 0.2 \mathrm{~cm}^{3}$ to one another.
- Two titres can only be arranged if they are consistent.
- N/B- If a student averages two titres when three are consistent award 0mk.
- If a student averages three inconsistent values, award 0 mark
E) Final answer (F. A) 1Mark
- If averaged titre is within 0.0 to $0.10 \mathrm{~cm}^{3}$ of $S . V$ award 1 mk
- If within 0.11 to $0.2 \mathrm{~cm}^{3}$ of s.v award $1 / 2 \mathrm{mk}$
- If beyond $0.20 \mathrm{~cm}^{3}$ award Omk.

Summary
Complete table $(C T)=1 m k \quad$ Type equation here.
Correct use of decimals $(d p)=1 m k$
Accuracy (AC) $=1 m k$
Averaging $(P A) \quad=1 m k$
Final answer (FA) $\quad=\underline{1 m k})$

$$
5 m k s
$$

N/B - For school value (SV), teacher to perform practical to obtain school value.

CALCULAIONS

I) Marked on the Table
II) Moles of sodium hydroxide in $25 \mathrm{~cm} 3=\frac{0.2 \mathrm{X} 25}{1000} 1$ mark

$$
=0.0051 \mathrm{mark}
$$

III) Moles in $250 \mathrm{~cm} 3=\frac{4.5}{126} 1 / 2 \mathrm{marks}$

$$
=0.0357 \text { 1/2 mark }
$$

$$
\begin{aligned}
\text { Moles of P in } 25 \mathrm{cm3} & =\frac{\text { Average volume } \times 0.0357}{250} 1 / 2 \mathrm{mark} \\
& =\text { correct answer }(\text { III })^{1 / 2} \mathrm{mark}
\end{aligned}
$$

IV) $\frac{0.005}{\text { Ans (III) }}$ I mark
= Ans (IV) $1 / 2$ Mark
Value of ' n ' = Ans (IV) (Given as a whole number) $1 / 2$ Mark

- The value of n MUST be written as a whole number to earn a mark.
- The number of moles MUST be given to at least 4dp unless it divides completely. OTHERWISE penalize $1 / 2$ mark for correct answer.

OUESTION 2-9 MARKS

a) Place all of solid A in a boiling tube. Add about $8 \mathrm{~cm}^{3}$ of distilled water and shake.

Divide the solution formed into 4 portions.

Observations	Inferences
- Solid dissolves to form a colourless solution ... $1 / 2$ mark - Accept for FULL credit a colourless solution formed. - REJECT: Colourles liquid. ($1 / 2$ mark)	- Soluble compound - $\mathrm{Cu}^{2+} \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$ absent N/B: Accept any of the inferences for FULL credit. - Penalize FULLY for any contradictory inference.

b) To the first portion, add sodium hydroxide drop wise until in excess

Observations	Inferences
- White ppt $1 / 2$ soluble $1 / 2$ in excess (lmark)	$\mathrm{Zn}^{2+}, \mathrm{Al}^{3+}, \mathrm{Pb}^{2+}$ lmark
	- Award lmark for 3 ions mentioned - Award $1 / 2$ mark for 2 ions mentioned - Award 0 mark for 1 ion mentioned - PENALIZE $1 / 2$ mark for any contradictory ion to a maximum of lmark.
	(1 mark)

c) To the second portion, add ammonia solution drop wise until in excess.

Observations	Inferences
- White ppt $1 / 2$ insoluble $1 / 2$ in excess (1 mark)	- $\mathrm{Al}^{3+}, \mathrm{Pb}^{2+}$ present - Award $1 / 2$ mark for each ion - PENALIZE $1 / 2$ mark for any contradictory ion to a maximum of 1 mark. - Accept the two ions only if they are mentioned in (b) above. (lmark)

d) To the third portion, add $\mathbf{3}$ drops of sodium chloride solution

Observations	Inferences
- No white ppt. REJECT - No ppt - No change - Colourless solution formed	- $A l^{3+}$ present - ACCEPT for $1 / 2$ mark $\boldsymbol{P b}^{2+}$ absent - Penalize FULLY for any contradictory ion.
(1 mark)	(lmark)

e) To the fourth portion add about $\mathbf{3}$ drops of barium nitrate followed by 4 drops of dilute nitric (V) acid

Observations	Inferences
- White precipitate $1 / 2$ that does not dissolves $1 / 2$ in addition of nitric (V) acid. - OR white ppt persists on addition of HNO_{3}	- $\mathbf{S O}_{4}{ }^{2-}$ present - PENALIZE FULLY for any contradictory ion.
(1 mark)	(1mark)

QUESTION 3 - 9MARKS

a) Scoop about a third of the solid B using a metallic spatula and ignite it on the non-luminous flame of the Bunsen burner

Observations	Inferences
- Burns with a yellow sooty/smoky flame ---1mark (1mark)	- $=\mathrm{C}=\mathrm{C}=\mathrm{OR}-\mathrm{C} \equiv \equiv \mathrm{C}-$ present - Accept unsaturated organic compound for FULL credit. - PENALIZE FULLY for any contradictory functional group. (1/2mark)

b) (i) Place the remaining solid B in a clean boiling tube, add about $10 \mathrm{~cm}^{3}$ of distilled water and shake. Divide the resulting solution into six (3) portions

Observations	Inferences	
-Solid dissolves to form a colourless solution.	$-\quad$ Polar compound	
(1mark)		(1 mark)

ii) To the first portion of the solution, add 2 drops acidified potassium manganite (vii) and warm

Observations	Inferences
- Purple KMnO4 changes to colourles/ is decolourises (1 mark)	$=\mathrm{C}=\mathrm{C}=/-\mathrm{C} \equiv \mathrm{C}-1 / 2$ mark, $\mathrm{R}-\mathrm{OH} 1 / 2$ mark present - PENALIZE $1 / 2$ mark for any contradictory ion to a maximum of 1 mark. (1mark)

iii) To the third portion of the solution, add 2 drops of acidified potassium dichromate (VI)

Observations	Inferences
-Orange colour of acidified $\mathbf{K}_{2} \mathbf{C r}_{2} \mathbf{O}_{7}$ persists/ does not change to green....1mark	R-OH absent.........1mark Note:
$(1$ mark $)$	PENALIZE FULLY for any contradictory ion
$(1$ mark $)$	

iv) To the fourth portion, add in the whole of solid sodium hydrogen carbonate provided

Observations	Inferences
- Effervescencel bubbles of a colourless odourless gas lmark	- \quad - COOH present.... 1/2 mark Note - Penalize FULLY for any contradictory ion. - REJECT: $\mathrm{H}^{+}, \mathrm{H}_{3} \mathrm{O}^{+}$

