INDEX NO: \qquad DATE: \qquad

233/3

CHEMISTRY PRACTICAL.
JULY - AUGUST, 2022
Time: $\mathbf{2}^{1 ⁄ 2}$ Hours

Kenya Certificate of Secondary Education.

MOKASA II EXAMINATIONS.

Instructions to students:

- Write your name, admission number and class in the spaces provided.
- Answer all questions in the spaces provided
- This paper consists of 8 printed pages.
- Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

Question	Maximum Score	Student's Score
$\mathbf{1}$	22	
$\mathbf{2}$	07	
$\mathbf{3}$	$\mathbf{1 1}$	
TOTAL	40	

1. You are provided with:

- $60 \mathrm{~cm}^{3}$ Solution L, Hydrochloric acid solution.
- $120 \mathrm{~cm}^{3}$ of Solution \mathbf{M} containing 12.6 g of a dibasic acid $\left(\mathbf{H}_{2} \mathbf{C}_{\mathbf{2}} \mathbf{O}_{\mathbf{4}} \mathbf{2 H}_{\mathbf{2}} \mathbf{O}\right)$ per litre. (Retain part of this solution to be used in question 2.)
- $200 \mathrm{~cm}^{3}$ of solution K, Sodium hydroxide solution.
- 3 pieces of Metal \mathbf{Z} each 2 cm long.

You are required to:

- Standardize sodium hydroxide solution \mathbf{K}.
- Use the standard solution \mathbf{K} to determine the concentration of \mathbf{L}.
- React the hydrochloric acid solution \mathbf{L} with metal \mathbf{Z} and determine the mass per unit length of metal \mathbf{Z}.

Procedure I

Fill the burette with solution M. Pipette $25 \mathrm{~cm}^{3}$ of solution \mathbf{K} into a conical flask. Titrate using phenolphthalein indicator. Record your results in the table below.

	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of M used $\left(\mathrm{cm}^{3}\right)$			

a) Calculate the average volume of solution M used.
b) Calculate the concentration of the dibasic solution M in moles per litre. $(\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16)$
\qquad
\qquad
\qquad

Procedure II

Using a $\mathbf{1 0 0} \mathbf{c m}^{\mathbf{3}}$ measuring cylinder, measure $\mathbf{9 0} \mathbf{c m}^{\mathbf{3}}$ of distilled water and place it in a $\mathbf{2 5 0} \mathbf{c m}^{\mathbf{3}}$ beaker. Add $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}}$ of solution \mathbf{L}. Mix the solution well and label it \mathbf{W}. Fill the burette with solution \mathbf{W}. Pipette $\mathbf{2 5} \mathbf{c m}^{\mathbf{3}}$ of solution \mathbf{K} into a conical flask and titrate it with \mathbf{W} using phenolphthalein indicator.

	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of W used $\left(\mathrm{cm}^{3}\right)$			

i) Determine the average volume of W used
\qquad
\qquad
ii) Calculate the concentration of the dilute hydrochloric acid solution W in moles per litre.
\qquad
\qquad
\qquad
iii) Determine the concentration of the original hydrochloric acid solution L in moles per litre. (1 mark)
\qquad
\qquad

Procedure III

Measure $\mathbf{1 0} \mathbf{c m}^{3}$ of solution \mathbf{L} into a boiling tube. Wrap the boiling tube with a tissue paper, measure the temperature of the solution and record it in the table below.
Place one of the 2 cm pieces of metal \mathbf{Z} into the hydrochloric acid solution \mathbf{L} in the boiling tube. Stir with a thermometer and record the highest temperature attained. Repeat the procedure using the other pieces of metal \mathbf{Z}.

Pieces of Metal Z	$\mathbf{1}^{\text {st }}$	$\mathbf{2}^{\text {nd }}$	$\mathbf{3}^{\text {rd }}$
Highest Temperature $\left({ }^{0} \mathrm{C}\right)$			
Initial Temperature $\left({ }^{0} \mathrm{C}\right)$			
Change in temperature, DT $\left({ }^{0} \mathrm{C}\right)$			

(i) Calculate the average change in temperature, DT $\left({ }^{0} \mathrm{C}\right)$
\qquad
\qquad
(ii) Calculate the heat change for the reaction between \mathbf{Z} and hydrochloric acid.
($c=4.2 \mathrm{KJ} / \mathrm{kg} / \mathrm{K}$).
\qquad
\qquad
\qquad
(iii) Given that the heat of the reaction is 440 kJ per mole of Z , calculate the number of moles of Z used in this reaction.
(iv)Calculate the mass per unit length of metal $Z .(Z=\mathbf{2 4})$.

2. You are provided with:

* About $80 \mathrm{~cm}^{3}$ of acidified potassium manganate (VII), solution A
* Solution M (Retained from question 1).

You are required to determine the effect of temperature on the reaction between potassium manganate (VII) with oxalic acid.

Procedure

Transfer $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}}$ of solution \mathbf{A} into five separate test-tubes in a rack. Label the test-tubes $\mathbf{1 , 2 , 3 , 4 , 5}$ respectively. Clean the measuring cylinder and use it to measure $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}}$ of solution \mathbf{M} into a clean boiling tube.
Place the boiling tube in a water bath and heat it to a temperature of $40^{\circ} \mathrm{C}$. Add the contents of test-
tube 1. Start the stop-watch and shake the mixture thoroughly. Record the time taken for the purple colour of the mixture to decolourise.
Repeat the procedure using solution A from test-tubes 2, 3, 4 and 5 at temperatures of $\mathbf{5 0}^{\mathbf{0}} \mathbf{C}, \mathbf{6 0}^{\mathbf{0}} \mathbf{C}$, $70^{\mathbf{0}} \mathrm{C}$ and $\mathbf{8 0}{ }^{\mathbf{0}} \mathrm{C}$ respectively. Fill the table below.

Temperature of solution M $\left({ }^{\circ} \mathrm{C}\right)$	40	50	60	70	80
Time taken for A to decolourise t (secs)					
$1 / \mathrm{t}(\mathrm{sec}-1)$					

(a) Plot a graph of $\mathbf{1}_{\mathbf{t}}$ against temperature on the grid below.

(b) From the graph, determine the time taken for decolourisation of the mixture when the temperature of solution \mathbf{M} was $65^{\circ} \mathrm{C}$.
(c) How does the rate of reaction of potassium manganate (VII) with solution M vary with temperature?
3. You are provided with solids \mathbf{P} and \mathbf{Q}. Carry out the tests below and write your observations and inferences in the spaces provided.
(a) Place all solid \mathbf{P} in a boiling tube. Add about $\mathbf{8} \mathbf{c m}^{\mathbf{3}}$ of distilled water.
(i) Dip a glass rod into the boiling tube containing the solution formed. Place it in a nonluminous flame.

Observation	Inference
$(1$ mark $)$	$(1 / 2$ mark $)$

(ii) Describe how you can confirm that the solution contains sulphate ions, using barium chloride solution and dilute nitric (V) acid consecutively.

Test 1	Expected Observation
	$(1$ mark $)$

Test 2	Expected Observation
$(1$ mark $)$	$(1 / 2$ mark $)$

(iii) Using a portion of the solution, carry out the tests you described in (ii) above.

Observation	Inference
$(1$ mark $)$	$(1$ mark $)$

(iv) Using about $2 \mathrm{~cm}^{3}$ portion of the solution, add acidified potassium dichromate (VI).

Observation	Inference
$(1$ mark $)$	$(1 / 2$ mark $)$

(v) Give the possible identity of the anion present in solution of \mathbf{P}. $\quad(1 / 2 \mathrm{mark})$
(b) (i) Scoop a third of solid \mathbf{Q} using a metallic spatula. Ignite it in a non-luminous flame

Observation	Inference
$(1$ mark $)$	(1 mark)

(ii) Place the remaining solid \mathbf{Q} in a boiling tube. Add $\mathbf{8} \mathbf{c m}^{\mathbf{3}}$ of distilled water.. Place about $\mathbf{2 c m}{ }^{\mathbf{3}}$ of the solution in a test-tube. Add 2-3 drops of acidified Potassium Manganate (VII) and warm.

Observation	Inference
$(1 / 2 \mathrm{mk})$	$(1 / 2 \mathrm{mk})$

