NAME: CLASS: ADM:

INDEX NO: DATE:

233/3 CHEMISTRY PRACTICAL. JULY - AUGUST, 2022 Time: 2 ¹/₄ Hours

Kenya Certificate of Secondary Education.

MOKASA II EXAMINATIONS.

Instructions to students:

- Write your name, admission number and class in the spaces provided.
- Answer **all** questions in the spaces provided
- This paper consists of 8 printed pages.
- Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

Question	Maximum Score	Student's Score
1	22	
2	07	
3	11	
TOTAL	40	

1. You are provided with:

- 60 cm³ Solution L, Hydrochloric acid solution.
- 120 cm³ of Solution M containing 12.6g of a dibasic acid (H₂C₂O₄ · 2H₂O) per litre. (Retain part of this solution to be used in question 2.)
- 200 cm³ of solution **K**, Sodium hydroxide solution.
- 3 pieces of Metal Z each 2cm long.

You are required to:

- Standardize sodium hydroxide solution K.
- Use the standard solution **K** to determine the concentration of **L**.
- React the hydrochloric acid solution **L** with metal **Z** and determine the mass per unit length of metal **Z**.

Procedure I

Fill the burette with solution \mathbf{M} . Pipette 25cm^3 of solution \mathbf{K} into a conical flask. Titrate using phenolphthalein indicator. Record your results in the table below.

	Ι	II	III	
Final burette reading (cm ³)				
Initial burette reading (cm ³)				
Volume of M used (cm ³)				
	I	I	(3	marks)
a) Calculate the average volum	e of solution M used.		(1	mark)
b) Calculate the concentration of the dibasic solution M in moles per litre. (C=12, H=1, O=16)				
			(1	mark)
				•••••
c) Calculate the concentration of	of the sodium hydroxi	de in moles per litre.	(2 marks)
				•••••

Procedure II

Using a 100cm^3 measuring cylinder, measure 90cm^3 of distilled water and place it in a 250cm^3 beaker. Add 10cm^3 of solution L. Mix the solution well and <u>label it W</u>. Fill the burette with solution W. Pipette 25cm^3 of solution K into a conical flask and titrate it with W using phenolphthalein indicator.

	Ι	Π	III]
Final burette reading (cm ³)				1
Initial burette reading (cm ³)				1
Volume of W used (cm ³)				
				(3 marks)
i) Determine the average volume	e of W used			(1 mark)
ii) Calculate the concentration of the dilute hydrochloric acid solution W in moles per litre. (2 m				(2 marks)
iii) Determine the concentration of	of the original hydroch	loric acid solution L	in moles per litre.	(1 mark)

Procedure III

Measure $10cm^3$ of solution L into a boiling tube. Wrap the boiling tube with a tissue paper, measure the temperature of the solution and record it in the table below.

Place one of the 2cm pieces of metal \mathbf{Z} into the hydrochloric acid solution \mathbf{L} in the boiling tube. Stir with a thermometer and record the highest temperature attained. Repeat the procedure using the other pieces of metal \mathbf{Z} .

Pieces of Metal Z	1 st	2 nd	3 rd
Highest Temperature(⁰ C)			
Initial Temperature(⁰ C)			
Change in temperature, DT (^{0}C)			

(2 marks)

(i) Calculate the average change in temperature, DT (⁰ C)	(1 mark)
(ii) Calculate the heat change for the reaction between \mathbf{Z} and hydrochloric acid. (c= 4.2 KJ/kg/K).	(1 mark)
(iii) Given that the heat of the reaction is 440 kJ per mole of Z, calculate the number of n in this reaction.	noles of Z used (2 marks)
(iv)Calculate the mass per unit length of metal Z. ($\mathbf{Z} = 24$).	(2 marks)

2. You are provided with:

- ✤ About 80 cm³ of acidified potassium manganate (VII), solution A
- **Solution M (Retained from question 1).**

You are required to determine the effect of temperature on the reaction between potassium manganate (VII) with oxalic acid.

Procedure

Transfer $10cm^3$ of solution A into five separate test-tubes in a rack. Label the test-tubes 1,2,3,4,5 respectively. Clean the measuring cylinder and use it to measure $10cm^3$ of solution M into a clean boiling tube.

Place the boiling tube in a water bath and heat it to a temperature of 40° C. Add the contents of testtube 1. Start the stop-watch and shake the mixture thoroughly. Record the time taken for the purple colour of the mixture to decolourise.

Repeat the procedure using solution A from test-tubes 2, 3, 4 and 5 at temperatures of **50^oC**, **60^oC**, **70^oC** and **80^oC** respectively. Fill the table below.

Temperature of solution M (⁰ C)	40	50	60	70	80
Time taken for A to decolourise t(secs)					
$^{1}/_{t}$ (sec-1)					

(2 marks)

(a) Plot a graph of $\frac{1}{t}$ against temperature on the grid below.

(3 marks)

- **3.** You are provided with solids **P** and **Q**. Carry out the tests below and write your observations and inferences in the spaces provided.
 - (a) Place all solid \mathbf{P} in a boiling tube. Add about $\mathbf{8cm}^3$ of distilled water.
 - (i) Dip a glass rod into the boiling tube containing the solution formed. Place it in a nonluminous flame.

Observation	Inference
(1 mark)	$(^{1}/_{2} mark)$

(ii) Describe how you can confirm that the solution contains sulphate ions, using barium chloride solution and dilute nitric (V) acid consecutively.

Test 1	Expected Observation
(1 mark)	$(^{1}/_{2} \text{ mark})$

Test 2	Expected Observation
(1 mark)	$(^{1}/_{2} \text{ mark})$

(iii) Using a portion of the solution, carry out the tests you described in (ii) above.

Observation	Inference
(1 mark)	(1 mark)

(iv) Using about 2 cm³ portion of the solution, add acidified potassium dichromate (VI).

Observation	Inference
(1 mark)	(7_2 mark)

- (v) Give the possible identity of the anion present in solution of **P**. $(^{1}/_{2} \text{ mark})$
 -
- (b) (i) Scoop a third of solid \mathbf{Q} using a metallic spatula. Ignite it in a non-luminous flame

Observation	Inference
(1 mark)	(1 mark)

(ii) Place the remaining solid \mathbf{Q} in a boiling tube. Add 8cm^3 of distilled water.. Place about 2cm^3 of the solution in a test-tube. Add 2 -3 drops of acidified Potassium Manganate (VII) and warm.

Observation	Inference
$(^{1}/_{2}mk)$	$(^{1}/_{2}mk)$