NAME	ADM NO:
STREAM	SCHOOL:

233/1 CHEMISTRY PAPER 1 October 2022

Time: 2 Hours

NYAHOKAKIRA CLUSTER THREE EXAMINATION 2022

Kenya Certificate of Secondary Education (KCSE)

Instructions to Candidates

- a) Write your name, admission number, index number in the spaces provided above.
- b) Write the name of school and stream in the spaces provided above.
- c) Answer all questions in the spaces provided in this question paper.
- d) All your answers must be written in the spaces provided after every question.

FOR EXAMINER'S USE ONLY

1	2	3	4	5	6	7	8	10	11	12	13	14	15	16	17	18	19	20	21

22	23	24	25	26	27	28	29	
								GRAND TOTAL

This paper consists of 12 printed pages. Candidates should check the question paper to ascertain that all pages are printed as indicated and that no questions are missing

1.	Aluminium metal is a good conductor and is used for overhead	cables. State any other two						
	properties that make aluminium suitable for this purpose.	(2 marks)						
2.	Starting with copper metal describe how a sample of pure coppe	er (II) chloride crystals car						
	be prepared.	(3 marks)						
3.	A piece of cover slip was weighted before and after a student pencil like of pure graphite. The masses were as shown below.							
	Mass of cover slip before the mark = 1.804g							
	Mass of cover slip after the mark was made = 1.9053g							
	Determine the number of carbon atoms used to draw the circle.	$(C = 12, L = 6.02 \times 10^{23})$						
		(3 marks)						
4.	5.04g of a mixture of anhydrous sodium carbonate and sodium	hydrogen carbonate when						
	heated to a constant mass, gave 4.11g of residue.							
	Vrite an equation for the reaction that takes place when the mixture							
	Calculate the percentage of anhydrous sodium carbonate in the mix							
••••								
• • • • •								

- 5. State and explain what would happen if a dry red litmus paper was dropped in a gas jar of dry chlorine. (2 marks) 6. Use the following equations to determine the heat evolved when aluminium metal is reacted with Iron (III) oxide. (3 marks) $2Fe_{(s)} + \frac{3}{2}O_{2(g)} \longrightarrow Fe_2O_{3(s)} \Delta H_2 = 836.8 \text{kJ/mole}$ $2Al_{(s)} + + \frac{3}{2}O_2$ $\Delta H_1 = -1673.6$ kJ/Mole
 - $2Al_{(s)} + Fe_2O_{3(s)} \longrightarrow Al_2O_{3(s)} + 2Fe_{(s)} \Delta H_4 = 836.8kJ/mole$
- 7. (a) The column below was used to soften hard water.

Fe₂O₃ \longrightarrow 2F₃ + $\frac{3}{2}$ O₂ \triangle H₃ = 836.8 kJ/mole

(i) Explain how the hard water was softened as it passed through the column (1 mark) (ii) After sometime the material in the column is not able to soften hard water. How can the material be reactivated? (1 mark) (b) Give one advantage of using hard water foe domestic purposes. (1 mark)

8. Use the cell represented below to answer the questions that follow.

$$Cr_{(s)} / Cr^{3+}_{(aq)} / / Fe^{2+}_{(aq)} / Fe_{(s)}$$

(a) Write the equation for the cell reaction.	(1 mark)
(b) If the e.m.f. of the cell is 0.30 volts and the E^{e} value for $Cr^{3+}_{\ (aq)}/Cr^{(s)}$	(2 marks)
9. (a) Distinguish between nuclear fission and nuclear fusion.	(1 mark)
(b) State two uses of radioisotopes in health	(2mks)
10. When a piece of sodium metal is place in cold water in a beaker it melts prod sound, as it moves on the surface of the water. Explain these observations.	lucing a hissing (2 marks)

11. The table below shows information of four elements **A**, **B**, **C** and **D**. Study it and answer the questions that follow. The letters do not represent the actual symbols of the elements.

Element	Electronic arrangement	Atomic radius	Ionic radius
A	2.8.2	0.136	0.065
В	2.8.7	0.99	0.181
С	2.8.8.1	0.203	0.133
D	2.8.8.2	0.174	0.099

(a) Which two elements have similar properties?	(1 mark)
(b) Explain why ${\bf B}$ ionic radius is larger than its atomic radius.	(2 marks)
12. The reaction below refers to the preparation of lead (II) sulphate starting with	
Lead Solution A Solution X Solution Y Mixture Y	Residue Z
(a) Name solution A	(1 mark)
(b) Write an ionic equation for the reaction in (a) above.	(1 mark)
(c) Explain why it is not possible to prepare residue Z using lead metal and di	lute sulphuric
acid.	(1 mark)

13. The set-up below was used to prepare a hydrocarbon. Study it and answer the questions that follow.

Gas Y	1 n	nar	rk	:)
-------	-----	-----	----	----

(b) Write a chemical equation for the complete reaction between gas Y and bromine vapour. (1 mark)

.....

14. The set up below can be used for the laboratory preparation of product **W**.

(a) Write chemical equation for the reaction that takes place in the retort flask. (1 mark)

.....

(b) Explain why product W appears yellow in colour. How is the colour removed?

(2 marks)

15. Study the electrode potential in the table below and answer the questions that follow.

$$\begin{array}{ccc} & & \underline{E \ volts} \\ Cu^{2+}_{\ (aq)} + 2e^{-} & \rightarrow Cu_{(s)} & +0.34 \\ Mg^{2+}_{\ (aq)} + 2e^{-} & \rightarrow Mg_{(s)} & -2.38 \\ Ag^{+}_{\ (aq)} & + e^{-} & \rightarrow Ag_{\ (s)} & +0.80 \\ Ca^{2+}_{\ (aq)} + 2e^{-} & \rightarrow Ca_{\ (s)} & -2.87 \end{array}$$

Is it possible to store a solution of copper (II) sulphate in a container made of magnesium .Explain (2 marks)

.....

.....

16. The table below shows the PH volumes of solution **A**, **B**, **C** and **D**.

Solution	A	В	С	D
PH	2	7	11	14

each	Select solutions i	ı				-		(2mks)
17.	Given that the at (a) Write the elect Y	tron arrange	ment of Y	and ${f Z}$				(1mk)
	Z(b)Draw the dot ((1mk)
	An element X wi abundance of eac	h isotope						(3mks)
	(a) State Charles'	law						(1mk)
a simil	50cm ³ ammonia gar volume of prop	gas diffuses (C_3H_8) t	through a so	small orithrough th	fice in 2 ne same	20 second orifice u	s. How long	will it take

19. Study the flow chart below and answer the questions that follow.

20. The table below gives three experiments on the reaction of excess sulphuric acid and 0.5g of zinc done under different conditions in each case the volume of gas was recorded at different time intervals.

EXPERIMENT	ZINC	SULPHURIC ACID CONCENTRATION
I	Powder	0.8M
II	Powder	1.0M
III	granules	0.8M

On the axes below draw and label the three curves that would be obtained from such results.

21. Wi	hen 20cm ³ of 1M sodium hydroxide was mixed with 20cm ³ of 1M hydrochlori	c acid, the
temper	rature rose by 6.7°c. Assuming the density of the solution is 1g/cm ³ and the spe	ecific heat
capaci	ty of the solution is $4.2 \text{ j/g}^{-1}/\text{k}^{-1}$.	
	(a) Calculate the molar heat of neutralization	(2mks)
		•••••
	(b) Draw the energy level diagram for the reaction in (a) above	(1mk)
• • • • • • • •		•••••
		•••••
		•••••
22.	The structure below represents a sweet smelling compound	
	CH_3 — CH_2 — CH_2 — CH_2 — CH_3 —	
	(a) To which class of organic compound does the structure above belong?	(1mk)
•••••	(b) Give the name of the two organic compounds that can be used to prepare	
used to	prepare the compound in the laboratory.	(1mk)
		, ,
	ve the structural formula of Ethylpropanoate	(1mk)
	, i i i i i i i i i i i i i i i i i i i	,
23.	. Classify the following processes as chemical changes or physical changes.	(2mks)
i)	Neutralization	
ii)	Sublimation	• • • • • • • • • • • • • • • • • • • •
iii)	Fractional distillation	•••••
iv)	Displacement	

24. Wooden splints F and G were placed in different zones of a Bunsen burner flame. The diagram below gives the observations that were made.

i)	Explain the difference between F and G. (1 mark)	
ii)	Name the type of flame that was used in the above experiment.	(1 mark)

25. Study the diagram below and answer the questions that follow.

(i) State and explain the observation that would be made in tube M after sometime. (1mk)

(ii) The sample of nitrogen collected at point Y had greater den conclusion could be made about the gas?	(1mk)
26. (a) State two differences between the terms electrolyte and non	-electrolyte. (2mks)
27. (b) Graphite is a non-metal yet it conducts electric current. Ex	plain. (1mk)
28. The apparatus shown below was used to investigate the effect Copper (II) oxide. Dry caborn (II) copper (III) pxide Heat Tube K Sodium hydroxide solution	t of carbon (II) oxide or
(a) State the observation that was made in the combustion tube at the	e end of the experiment. (1mk)

(b) Write an equation for the re	_			(1mk)		
(c) Why is it necessary to burn				(1mk)		
29. When bismuth (III) chlori forms as shown below. BiCl _{3(aq)} + H ₂ O _(l) BiO		a reaction occ	urs and a wh	nite precipitate		
What would be the effect on the is added to the equilibrium mi	xture? Explain your	answer.		(2mks)		
30. The flow chart below shows some process in extraction of lead metal. Study it and answer the questions that follow.						
Raw materials	SO _{2(S)} Tunit I Roasting Chamber	PbO(s)	Coke ↓ Unit	CO ₂		
a) Name <u>two</u> raw materials that w	ere fed into Unit I.	(11	nk)			
b). State one environment hazard	associated with the I	process in Unit I	. ((1mk)		

(1mk)

c) What is the function of coke in unit II?